Меню

Цементация стали 09г2с твердость

Цементация стали 09г2с твердость

Получение ультрамелкозернистого (УМЗ) и нанокристаллического (НК) состояния с высоким комплексом механических свойств в промышленных масштабах является актуальной задачей современного металловедения. В связи с этим в последнее время активно развиваются подходы к получению таких материалов [1].

Одним из методов диспергирования структуры материалов является механо-термическая обработка, которая включает холодную радиальную ковку и последующий отжиг. Радиальная ковка обеспечивает высокие степени деформации в промышленных условиях для высокоточных длинномерных поковок, при этом достигается высокая дробность деформации благодаря использованию вырезных фасонных бойков [2]. Во время ковки происходит многократное перекрытие очагов деформации с накоплением высоких степеней деформации. Последующий отжиг вызывает развитие рекристаллизационных процессов с формированием дисперсной структуры [3, 4].

Таким образом, целью данной статьи является исследование закономерностей формирования структуры и свойств конструкционной стали на разных этапах механо-термической обработки.

Материалы и методики эксперимента

В качестве материала исследования выбрана конструкционная низкоуглеродистая сталь 09Г2С следующего химического состава, % (масс.): 0,11 С; 0,50 Si; 1,26 Mn; 0,22 Cr; 0,14Ni; 0,14 Mo; 0,005S; 0,017P.

Предварительная термическая обработка трубных заготовок из исследуемой стали заключалась в термическом улучшении: закалка в воде от температуры 920°С, время выдержки 30 минут с последующим отпуском при температуре 570°С в течение 1 часа с охлаждением в воде.

Холодную пластическую деформацию трубных заготовок проводили в три прохода на радиально-ковочной машине SXP-16 с частотой 1000 ударов в минуту, заготовку при этом вращали вокруг своей оси со скоростью 25 оборотов в минуту с суммарной степенью деформации 55%.

Микроструктуру исследуемых сталей исследовали на микрошлифах с использованием светового микроскопа Olympus GX51. Для выявления микроструктуры поверхность микрошлифов подвергали травлению в 4%-ном спиртовом растворе азотной кислоты. Тонкую структуру сталей изучали на просвечивающем электронном микроскопе FEI Tecnai 20 G2 TWIN при ускоряющем напряжении 200 кВ.

Характеристики прочности и пластичности определяли на цилиндрических образцах с начальным диаметром 5 мм, в соответствии с требованиями ГОСТ 1497-73, на универсальной гидравлической системе для статических испытаний «INSTRON-SATEC 300 LX».

Испытания на ударную вязкость проводили на образцах типа 3 и типа 17 по ГОСТ 9454-78 на маятниковом копре КМ-30 при комнатной температуре. Трещину наносили на вибраторе Дроздовского.

Результаты и их обсуждение

Для исследования формирования структуры и свойств при механо-термической обработке выбрана низколегированная конструкционная низкоуглеродистая сталь 09Г2С в исходно термоулучшенном состоянии. Структура трубной заготовки исследуемой стали на наружной и внутренней поверхности после термического улучшения и холодной пластической деформации методом радиальной ковки со степенью 55% представлена на рисунке 1, а и б.

После термического улучшения в стали 09Г2С реализуется структура сорбита отпуска с избыточной ферритной фазой. Причем вблизи наружной и внутренней поверхностей трубы структура отличается количеством избыточной ферритной фазы, что можно объяснить низкой прокаливаемостью исследуемой стали. Количество структурно свободной ферритной фазы на внешней поверхности составляет порядка 20% (рис. 1, а), а на внутренней – порядка 50% (рис. 1, б).

Холодная пластическая деформация методом радиальной ковки со степенью 55% нивелирует структурные отличия в строении внешней и внутренней поверхности исходно термоулучшенной трубной заготовки (рис. 1, в и г) за счет образования большого количества границ зерен/субзерен в структурно свободного феррита стали 09Г2С. Другими словами, холодная РК позволяет исправлять дефекты термического улучшения низколегированных сталей (таких как структурно свободный феррит) за счет их диспергирования. Такой эффект вызван измельчением элементов структуры и субструктуры исследуемой стали в результате развития процессов фрагментации структуры при холодной пластической деформации [5].

а б

в г

Рисунок 1. Микроструктура конструкционной низкоуглеродистой стали 09Г2С в термоулучшенном состоянии (а, б) и после радиальной ковки со степенью ε = 55% (в, г) вблизи наружной (а, в) и внутренней (б, г) поверхности.

Микроструктура стали 09Г2С, подвергнутой последеформационному нагреву до температур 500 и 600°С, приведена на рисунке 2. При рекристаллизационном отжиге в интервале температур 500…600°С холоднодеформированной стали получают развитие процессы рекристаллизации, и структура становится однородной по всему сечению стенки трубной заготовки, при этом участки структурно свободного феррита методом световой микроскопии практически не выявляются.

а б

в г

Рисунок 2. Микроструктура конструкционной низкоуглеродистой стали 09Г2С вблизи наружной (а, в) и внутренней (б, г) поверхностей трубной заготовки, подвергнутой последеформационному отжигу: а, б – при 500˚С; в, г – при 600˚С.

Для изучения тонкой структуры стали 09Г2С после холодной пластической деформации методом радиальной ковки со степенью 55% и последующего отжига при температуре 500°С была использована просвечивающая электронная микроскопия (рис. 3, а). В структуре исследуемой стали после такого режима обработки сохраняются объемы деформированного металла, в которых процессы рекристаллизации сдерживаются мелкодисперсными карбидами. Характер распределения зерен и субзерен по размерам для исследуемых сталей также имеет левую асимметрию и носит логнормальный характер (рис. 3, б). Средний размер субзерна α-фазы после отжига при 500 °С составляет 555 нм, т.е. в данных условиях в стали 09Г2С формируется ультрамелкозернистая структура.

Читайте также:  Живая сталь 2 дата выхода 2021 года в москве

а 400 нм

б

Рисунок 3. Тонкая структура (а) и гистограмма распределения субзерен α-фазы по размерам (б) стали 09Г2С после холодной пластической деформации методом радиальной ковки со степенью 55% и последеформационного отжига при температуре 500 °С.

Результаты испытания характеристик механических свойств конструкционной низкоуглеродистой стали 09Г2С на разных этапах механо-термической обработки приведены в таблице 1.

При холодной радиальной ковке стали 09Г2С происходит упрочнение: после деформации со степенью 55% наблюдается рост предела текучести на 50%, а предел прочности повышается практически на 30%. Характеристики пластичности после холодной пластической деформации существенно снижаются: относительное удлинение уменьшается практически в 2 раза по сравнению с исходным термоулучшенным состоянием.

Характеристики ударной вязкости образцов исследуемой стали в результате холодной пластической деформации снижаются в среднем на 15%, но по-прежнему остаются на достаточно высоком уровне (таблица 1).

Последеформационный нагрев на 300˚С стали 09Г2С не приводит к существенному изменению характеристик механических свойств, однако при этом снижается уровень относительного удлинения на 25%. Изменение относительного сужения и ударной вязкости образцов с U-образным концентратором и с трещиной не превышает 10% по сравнению с исходным термоулучшенным состоянием.

Таблица 1. Значения механических свойств стали 09Г2С после различных режимов обработки.

Источник

СТАЛИ ДЛЯ ЦЕМЕНТАЦИИ И НИТРОЦЕМЕНТАЦИИ

Цементация и нитроцементация – наиболее распространенные методы химико-термической обработки (ХТО) стали. В результате такой обработки происходит поверхностное упрочнение деталей машин и механизмов: возрастают износостойкость, прочность, усталостная прочность, а в ряде случаев сопротивление коррозии и окалиностойкость.

Цементации и нитроцементации подвергают низкоуглеродистые стали с содержанием углерода 0,08…0,25 %, что обеспечивает получение вязкой сердцевины. Для некоторых высоконагруженных деталей содержание углерода в стали может быть повышено до 0,35 %. С повышением содержания углерода в стали уменьшается глубина цементованного слоя, увеличивается прочность и понижается вязкость сердцевины.

Требования, предъявляемые к цементуемым сталям:

— возможность получения требуемого уровня свойств;

— хорошая обрабатываемость резанием;

Цементацию проводят при температурах выше точки А3 в аустенитной области. Температурный интервал цементации составляет 920…980 0 С. Имеется положительный опыт применения для некоторых легированных сталей высокотемпературной цементации при 980…1050 0 С. При этом значительно ускоряется процесс цементации вследствие увеличения коэффициента диффузии углерода, однако одновременно растет зерно аустенита и увеличивается коробление деталей. Поэтому для высокотемпературной цементации необходимо применять стали с наследственно мелким зерном или легировать сталь элементами, замедляющими рост аустенитного зерна при нагреве (Ti, V).

Термическая обработка изделий после цементации заключается в закалке и низкотемпературном отпуске, причем закалка может осуществляться непосредственно от температуры цементации (одинарная термическая обработка) или после охлаждения от температуры цементации (в этом случае часто применяют охлаждение на воздухе – нормализацию) и повторного нагрева до температуры несколько ниже точки А1 с последующей закалкой и отпуском (двойная термическая обработка). Закалку от температуры цементации часто применяют после подстуживания до 840…860 0 С с целью уменьшения коробления изделий.

Легирующие элементы влияют на скорость процесса цементации, глубину цементованного слоя и концентрацию углерода в поверхностной зоне. Некарбидообразующие элементы, такие как Ni, Si, Co ускоряют диффузию углерода в аустените при 950 0 С. В то же время, эти элементы снижают растворимость углерода в аустените и тем самым уменьшают максимальное содержание углерода в поверхностном слое. Наиболее сильно ускоряет диффузию углерода в аустените и понижает содержание углерода в цементованном слое кремний. Однако при более высоких температурах (1000, 1100 0 С) Si уменьшает коэффициент диффузии углерода в аустените.

Как правило, карбидообразующие элементы понижают коэффициент диффузии углерода в аустените. Например, в стали с 1,2% Si и 1% легирующего элемента при температурах, соответствующих интервалу цементации, наблюдается замедление диффузии углерода при легировании в такой последовательности: Mn, Mo, V, W, Cr. Карбидообразующие элементы повышают максимальную концентрацию углерода в поверхностном слое по сравнению с углеродистой нелегированной сталью, что связано с интенсивным карбидообразованием в поверхностном слое. С повышением температуры содержание углерода в цементованном слое легированных сталей уменьшается.

В легированных сталях после цементации (нитроцементации) и закалки кроме мартенсита и карбидов (карбонитридов) присутствует также остаточный аустенит, количество которого может быть значительным. В небольшом количестве остаточный аустенит в цементованном слое может быть даже полезным, так как при этом повышается пластичность и особенно ударная вязкость, но при большом его содержании существенно снижается твердость стали, поэтому для высоколегированных цементуемых сталей в целях уменьшения количества остаточного аустенита проводят обработку холодом после закалки.

Читайте также:  Парапет для крыши из оцинкованной стали

Добавки молибдена до 0,3…0,5% в хромоникелевые и хромомарганцевые стали увеличивают прокаливаемость цементованного слоя (стали 25ХГМ, 20ХНМ, 20ХНМ). Бор увеличивает прокаливаемость сердцевины.

Широко применяется легирование цементуемых сталей элементами, задерживающими рост зерна аустенита при нагреве (V или Ti). Особенно благоприятно легирование цементуемых сталей Ni, который повышает вязкость цементованного слоя и сердцевины и понижает порог хладноломкости. Однако вследствие дефицитности Ni наблюдается тенденция к замене высоконикелевых сталей малоникелевыми (например, стали 18Х2Н4ВА и 20Х2Н4А).

Оптимальное содержание углерода при цементации в поверхностном слое составляет 0,8…0,9%. Увеличение содержания углерода до более высоких значений способствует выделению карбидов по границам зерен, что может приводить к образованию трещин в цементованном слое и снижению механических свойств.

Новые направления в создании цементуемых сталей и их обработке

1) Учитывая дефицитность никеля, разрабатываются безникелевые цементуемые стали типа 15ХГ2МФ. Частично никель заменяют на марганец: 20ХГНМФ.

2) Учитывая, что ванадий и титан являются дорогими элементами, их заменяют комбинацией азота и алюминия, например: 25ХГНМАЮ.

3) Создание низкоуглеродистых сталей, содержащих 4…16% Mn (ЦНИМС) и проведение цементации. Примером таких сталей являются: 08Г4АТФ, 08Г7АФ, 08Г10Х2АФ, 08Г(4-16)ТЮ. Задача сводится к получению аустенитной структуры, армированной карбидами. Метастабильный аустенит в процессе деформации превращается в мартенсит деформации, повышая абразивную износостойкость сталей.

4) Новым направлением в технологии является вакуумная цементация, которая позволяет существенно сократить расход газа – карбюризатора, ионная цементация в тлеющем разряде (ускоренный процесс), цементация в кипящем слое, с нагревом ТВЧ и с использованием источников концентрированной энергии: лазерные лучи, плазменная струя. Это обеспечивает высокую твердость поверхности и получение необходимого количества метастабильного аустенита в структуре, а также чередование в заданной последовательности твердых и мягких составляющих, что существенно повышает износостойкость и другие служебные свойства сталей.

5) Создание дисперсионно-твердеющих сталей, которые могут работать не только при низких, но и повышенных температурах.

6) В принципе, цементировать можно любые стали.

1. Какие требования предъявляются к сталям для цементации и нитроцементации?

2. Каковы принципы легирования, роль легирующих элементов и области применения рассматриваемых сталей?

3. Какое влияние оказывают легирующие элементы на скорость процесса цементации, глубину цементованного слоя и концентрацию углерода в поверхностной зоне?

4. Какова термическая обработка сталей после цементации и нитроцементации.?

5. Каковы современные направления в создании рассматриваемых сталей?

УЛУЧШАЕМЫЕ СТАЛИ

Улучшаемыми сталями называют стали, используемые после закалки и высокого отпуска. Такие стали содержат 0,25—0,5%С и их подвергают закалке от 820—880°С (в за­висимости от состава) в масло (крупные детали охлаждают в воде) и высокому отпуску при 500—650°С. После такой обработки струк­тура стали представляет собой сорбит отпуска. Улучшаемые стали должны иметь высокий предел текучести, малую чувствительность к концентраторам напряже­ний, а в изделиях, работающих при многократно прилагаемых на­грузках — высокий предел выносливости и достаточный запас вяз­кости: s0,2= 900 МПа, sВ=1100 МПа, d=10%, y=60%, KCU=0,8 МДж/м 2 . Кроме того, улучшаемые стали должны обладать хорошей прокаливаемостью, технологичностью, экономичностью и малой чувствительностью к отпускной хруп­кости.

В качестве улучшаемых легированных сталей применяются: марганцовистые, хромистые, хромомарганцевые, хромокремнемарганцевые, хромоникелевые, хромоникельмолибденовые, хромоникельмолибденованадиевые стали.

Свойства улучшаемой стали зависят от прокаливаемости, т.е. от стру­ктуры по сечению изделия после закалки. При полной (сквозной) прокаливаемости структура по всему се­чению — мартенсит. При неполной (несквозной) прокаливаемости наряду с мартенситом образуются немартенситные продукты распа­да аустенита (верхний и нижний бейнит, феррито-перлитная смесь).

Наиболее высокие механические свойства (практически по всем показателям) достигаются после высокого отпуска исходной струк­туры мартенсита. Если сталь имеет другие структуры, то некоторые свойства могут ухудшаться. Особенно сильно это может сказывать­ся на параметрах, характеризующих сопротивление стали хрупкому разрушению (например, температуре перехода из вязкого в хрупкое состояние) и вязкому разрушению (работе развития трещины).

В зависимости от требований по прокаливаемости и необходимого уровня механических свойств в машиностроении используют боль­шое количество различно легированных сталей. Марки легирован­ных конструкционных сталей определяются ГОСТ 4543-71, ряд сталей изготовляется также по техническим условиям. Основными легирующими элементами в улучшаемых сталях являются хром, марганец, никель, молибден, бор, ванадий и др.

Широко распространены следующие улучшаемые машиностроительные стали: 40ХФА, 30Г2, 40ХГТР, 38ХС, 30ХГСА, 30ХМА, 40ХН, 40ХН2МА, 35ХГФ и др.

Читайте также:  Что лучше серебро или медицинская сталь

Легированным конструкционным сталям свойственна повышенная анизотропия свойств, т.е. различие свойств в зависимости от на­правления деформации при ковке или прокатке. Уменьшение анизо­тропии свойств достигается металлургическими способами (умень­шением в стали сульфидов и других неметаллических включений, изменением условий горячей пластической деформации и др.). Эти стали чувствительны к флокенам, наиболее чувствительны к образо­ванию флокенов доэвтектоидные легированные перлитные и перлитно-мартенситные стали.

Хромистые стали: 30Х, 35Х, 40Х, 45Х, 50Х, 35Х2АФ, 40Х2АФЕ яв­ляются наименее легированными и обеспечивают прокаливаемость в несколько больших сечениях (до 20. 25 мм в масле), чем соответствующие углеродистые ста­ли. Хром не оказывает сильного влияния на разупрочнение при отпуске, однако он увеличивает склонность стали к отпускной хрупкости. Поэтому изделия из этих ста­лей после высокого отпуска следует охлаждать в масле или воде, недопустимо ох­лаждение после отпуска с печью. Легирование хромом не увеличивает склонности к росту зерна аустенита. Однако с целью получения мелкозернистой структуры в них вводят ванадий (40ХФ), который, находясь в карбидах, препятствует росту зерна, а при отпуске задерживает разупрочнение. Поэтому для получения одинаковой, проч­ности сталь 40ХФ при улучшении необходимо отпустить на 30. 50°С выше, чем сталь 40Х. Это имеет большое значение для более полного снятия остаточных на­пряжений в изделиях и повышения их предела усталости.

Марганцовистые стали (30Г2, 35Г2, 40Г2, 45Г2, 50Г2) имеют несколько большую прокаливаемость, чем хромистые. Однако марганец усиливает склонность зерна к росту, поэтому эти стали чувст­вительны к перегреву и могут иметь пониженную ударную вязкость, особен­но при отрицательных температурах. Эти стали можно применять при обра­ботке ТВЧ и для изделий, несущих не­большие ударные нагрузки.

Хромомарганцевые стали (25ХГТ, 30ХГТ, 40ХГТ, 35ХГФ и др.) обладают повышенной устойчивостью переохлажденного аустенита и соответственно прокаливаемостью (до 40 мм). С целью получения мелкозернистой структуры в ряд сталей вводят небольшие добавки титана (0.03. 0.09 %). Легирование ванадием (сталь 35ХГФ) также позволяет получить мелкозернистую структуру и по­высить температуру отпуска на заданную твердость. Сталь 35ХГФ обеспечивает замену хромоникелевой стали 40ХН и применяется, как и другие стали этой груп­пы, для машиностроительных деталей ответственного назначения (валы, шатуны, шестеренки и т.д.).

Хромокремнистые и хромокремнемарганцовистые стали (33ХС, 38ХС, 25ХГСА, 30ХГСА, 35ХГСА и др.) обладают высокой прочностью и умеренной вязкостью. Широкое распространение (особенно в авиастроении) получили стали типа 30ХГСА (хромансиль), обладающие хорошей свариваемостью. Хромансили приме­няют после закалки и низкого отпуска или после улучшения (отпуск 520. 540°С).

Хромомолибденовые стали (30ХМ, 35ХМ, 38ХМ, 30ХЗМФ, 40ХМФА), обладая хорошей прокаливаемостью, имеют высокий комплекс механических свойств и мало склонны к отпускной хрупкости благодаря молибдену. Особенно­стью хромомолибденовых сталей является способность сохранять высокие механи­ческие свойства при повышенных температурах. Сталь 30Х3МФ имеет прокаливае­мость и свойства, подобные таковым хромоникелевой стали 30ХН2МА. Благодаря ванадию сталь 30Х3МФ является мелкозернистой.

Хромоникелевые и хромоникельмолибденовые (вольфрамовые) стали (20ХН3А, 20Х2НЧА, 40ХН, 30ХН3А и др., 20ХН2М, 30ХН2М, 38Х2Н2МА, 40ХН2МА, 38ХН3МА, 18Х2Н4МА и др.) являются наиболее качественными, их применяют для изготовления самых ответственных крупных изделий (сечением порядка 100. 1000 мм). Уникальные свойства хромоникелевых и хромоникельмолибденовых сталей достигаются вследствие их чрезвычайно высокой прокаливаемости и наибольшей вязкости.

Стали с 3. 4 % Ni имеют наибольший температурный запас вязкости. К ним относятся стали 20ХН3А, 30ХН3А, 18Х2Н4МА, 38ХН3МА. Однако хромоникелевые стали имеют существенный недостаток: они сильно склонны к обратимой отпускной хрупкости. Молибден и вольфрам значительно ослабляют склонность к развитию отпускной хрупкости, поэтому хромоникельмо­либденовые (вольфрамовые) стали практически лишены этого недостатка. Молиб­ден и вольфрам взаимозаменяемы в таких сталях, последние могут изготовляться с полной или частичной заменой молибдена на вольфрам из расчета: одна часть мо­либдена заменяется тремя частями вольфрама. Так, хромоникельвольфрамовые стали должны содержать: 38ХН3ВА 0,5. 0,8 %W; 12X2H4BA 0,8. 1,2 %W. Стали с молибденом и вольфрамом равноценны по свойствам, в том числе и по склонности к отпускной хрупкости.

Хромоникельмолибденовые (вольфрамовые) стали иногда содержат ванадий (38ХН3МФА, 45ХН2МФА, 30Х2НМФА), что обеспечивает их мелкозернистость и повышает устойчивость против отпуска.

Хромоникельмолибденовые (вольфрамовые) стали являются наилучшими из всех известных конструкционных машиностроительных сталей. В последнее время разработаны конструкционные высокопрочные низкоуглеродистые стали мартенситного класса, имеющие хорошее сочетание характеристик прочности, пластично­сти и ударной вязкости. К таким сталям относится сталь 15Х3Г3МФ, имеющая после закалки (920°С, масло) и отпуска (200°С) такие свойства: σВ = 1300. 1400 МПа, σ0,2 = 980. 1070 МПа, ψ = 57. 60 %, δ =12. 14%, КСU = =0,87. 1,1 МДж/м 2 .

Источник

Adblock
detector