Меню

Температура закалки стали 20 после цементации

Сравнение процессов цементации в твердом карбюризаторе и нитроцементации зубчатых колес из стали 20Х

ХТО применяется для изготовления деталей машин, у которых поверхность в результате трения подвергается износу и одновременно на них действуют и динамические нагрузки. Для успешной работы в этих условиях поверхностный слой детали должен иметь твёрдость HRC 58 … 62, а сердцевина обладать высокой вязкостью и повышенным пределом текучести при твёрдости HRC 30 … 42.

Химико-термической обработкой называют поверхностное насыщение стали соответствующим элементом (например, углеродом, азотом, алюминием, хромом и др.) путем его диффузии в атомарном состоянии из внешней среды при высокой температуре.

Процесс химико-термической обработки включает три элементарные стадии:

1. Выделение диффундирующего элемента в атомарном состоянии благодаря реакциям, протекающим во внешней среде; 2. Контактирование атомов диффундирующего элемента с поверхностью стального изделия и проникновение (растворение) их в решетку железа (адсорбция); 3. Диффузия атомов насыщающего элемента в глубь металла.

Толщина проникновения (диффузия) зависит от температуры и продолжительности насыщения (рис. 1)

Рис. 1. Зависимость толщины диффузионного слоя от продолжительности насыщения (а), температуры (б) и изменение концентрации по толщине диффузионного слоя (в).

Толщина диффузионного слоя (x) в зависимости от продолжительности процесса τ при данной температуре обычно выражается параболической зависимостью. Следовательно, с течением времени скорость увеличения толщины слоя непрерывно уменьшается (рис. 1,а). Т олщина диффузионного слоя, при прочих равных условиях, тем больше, чем выше концентрация диффундирующего элемента на поверхности металла (рис. 1,в).

  1. Цементация в твердом карбюризаторе

При цементации в твердом карбюризаторе, насыщающей средой является древесный уголь (дубовый или березовый) в зернах поперечником 3,5 – 10 мм или каменноугольный полукокс и торфяной кокс, к которым добавляют активизаторы: углекислый барий (BaCO3) и кальцинированную соду (Na2CO2) количестве 10 – 40% от массы угля.

Широко применяемый карбюризатор состоит из древесного угля, 20 – 35% BaCO3и

3,5% CaCO3. Рабочую смесь, применяемую для цементации, составляют из 25 – 35% свежего карбюризатора и 65 – 75% отработанного. Содержание BaCO3 в такой смеси 5 – 7%, что обеспечивает требуемую толщину слоя и исключает образование грубой цементитной сетки на поверхности.

Изделия, подлежащие цементации, после предварительной очистки укладывают в ящики: сварные стальные или, реже, литые чугунные прямоугольной формы. При упаковке изделий на дно ящика насыпают и утрамбовывают слой карбюризатора толщиной 20 – 30 мм, на который укладывают первый ряд деталей, выдерживая расстояние между деталями и до боковых стенок ящика 10 – 15 мм. Затем засыпают и утрамбовывают другой ряд деталей и т.д. Последний (верхний) ряд деталей засыпают слоем карбюризатора толщиной 35 – 40 мм с тем, чтобы компенсировать возможную его усадку. Ящик накрывают крышкой, кромки которой обмазывают огнеупорной глиной или смесью глины и речного песка. После этого ящик помещают в печь.

Цементацию проводят в аустенитном состоянии, т.к. в α -железе углерод практически нерастворим. Нагрев до температуры цементации (910 – 930 ˚С) составляет 7 – 9 мин. на каждый сантиметр минимального размера ящика. Продолжительность выдержки при температуре цементации для составляет 4 – 6 ч для слоя толщиной 0,4 – 0,6 мм (скорость цементации в твердом карбюризаторе

0,1 мм/мин ). Содержание углерода на поверхности цементирумого изделия составляет 0,8 – 1,0 %. С углублением от поверхности вглубь оно уменьшается до исходного – 0,2% (рис. 2).

Рис.2 Диффузионные процессы при Цементации

После цементации ящики охлаждают на воздухе до 400 – 500 ˚С и затем раскрывают. В процессе медленного охлаждения после цементации на поверхностном слое залегает заэвтектоидная зона, состоящая из перлита и карбидной сетки. Глубже лежит эвтектоидная зона, со структурой пластинчатого перлита, а под ней – доэвтектоидная перлито – ферритная зона, количество перлита в которой уменьшается с удалением от поверхности к центру (рис. 3).

Рис.3 Микроструктура диффузионной зоны после медленного охлаждения с температуры науглероживания железа

Цементацию стали проводят атомарным углеродом. При цементации твердым карбюризатором атомарный углерод образуется следующим образом. В цементированном ящике имеется воздух, кислород которого при высокой температуре взаимодействует с углеродом карбюризатора, образуя окись углерода. Окись углерода в присутствии железа диссоциирует по уравнению

Углерод выделяющийся в результате этой реакции в момент его образования, является атомарным и диффундирует в аустенит. Добавление углекислых солей активизирует карбюризатор, обогащая атмосферу в цементационном ящике окисью углерода:

  1. Термообработка после цементации

Окончательные свойства цементованных изделий достигаются в результате термической обработки, выполняемой после цементации. Этой обработкой можно исправлять структуру и измельчить зерно сердцевины и цементованного слоя, неизбежно увеличивающихся во время длительной выдержки при высокой температуре цементации, получить высокую твердость в цементованном слое и хорошие механические свойства сердцевины; устранить карбидную сетку в цементованном слое, которая может возникнуть при насыщении его углеродом до заэвтектоидной концентрации.

После цементации термическая обработка состоит из двойной закалки и отпуска.

Первую закалку (или нормализацию) с нагревом до 880 – 890 ˚С (выше точки Ас3 сердцевины) назначают для исправления структуры сердцевины. Кроме того, при нагреве в поверхностном слое в аустените растворяется цементитная сетка, которая уже вновь не образуется при быстром охлаждении.

Вторую закалку проводят с нагревом до 760 – 780 ˚С для устранения перегрева цементованного слоя и придания ему высокой твердости.

В результате термической обработки поверхностный слой приобретает структуру мелкоигольчатого мартенсита, изолированных участков остаточного аустенита (15 – 20%) и небольшого количества избыточных карбидов в виде глобулей. Структура сердцевины – в зависимости от величины зубчатого колеса может быть различной – феррит+перлит ( σ Т

700 МПа), либо отпущенный мартенсит ( σ Т

Заключительно операцией термической обработки цементованных изделий во всех случаях является низкий отпуск при 160 – 180 ˚С, переводящий мартенсит закалки в поверхностном слое, отпущенный мартенсит, снимающий напряжения.

Твердость поверхностного слоя после термической обработки HRC 58 – 62.

4. Нитроцементация и термообработка после нее

Нитроцементацией называют процесс диффузионного насыщения поверхностного слоя стали одновременно углеродом и азотом при 840 – 860 ˚С в газовой среде, состоящей из науглероживающего газа и аммиака. Продолжительность процесса для получения слоя толщиной 0.4 — 0.6 мм составляет 4 – 5 ч. Таким образом скорость роста нитроцементованного и цементованного слоев на глубину 0,5 мм практически одинакова, хотя температура нитроцементации почти на 100 ˚С ниже.

Для нитроцементации легированных сталей используеься контролируемая эндотермическая атмосфера, к которой добавляют 1,5 – 5,5% необработанного природного газа и 1,0 – 3,5% NH3.

После нитроцементации следует закалка либо непосредственно из печи с подстуживанием до 800 – 825 ˚С, либо после повторного нагрева; применяют и ступенчатую закалку. После закалки проводят отпуск при 160 – 180 ˚С.

При оптимальных условиях насыщения структуры нитроцементованного слоя должны состоять из мелкокристаллического мартенсита, небольшого количества мелких равномерно распределенных карбонитридов и 25 – 30% остаточного аустенита.

Твердость слоя после закалки и низкого отпуска HRC 58 – 64 (HV 570 – 690).

5. Преимущества нитроцементации по сравнению с цементацией

Нитроцементация имеет следующие преимущества по сравнению с цементацией. Процесс происходит при более низкой температуре (840 – 860 ˚С вместо 910 – 930 ˚С); глубина требуемого слоя обычно меньше; получается меньше деформации и коробление изделий; повышается сопротивление износу и коррозии.

— Смирнов М.А., Счастливцев В.М., Журавлёв Л.Г. Основы термической обработки стали: Учебное пособие. – Екатеринбург: УрО РАН, 1999. – 496 с.

— В.Г. Ушаков, В.И. Филатов, Х.М. Ибрагимов Выбор марки стали и режима термической обработки деталей машин

— Лахтин Ю.М., Рахштадт А.Г. Термическая обработка в машиностроении – М: ОЛМА-ПРЕСС, 1980. -426 с.

— Лахтин Ю.М., Леонтьева В.П. Материаловедение: Учебник для машиностроительных вузов – 2-е изд., перераб. и доп. – М.: Машиностроение, 1980. – 493 с.

Источник

Сталь 20 (Сталь 20А)

Химический состав

Для обеспечения длительного срока службы химический состав оставляется сбалансированным. Кроме этого, в составе нет большого количества легирующих элементов, за счет чего обеспечивается простота производства. Состав стали 20 характеризуется следующим образом:

  1. Основная часть металла представлена железом. Показатель его концентрации составляет 98%.
  2. Как ранее было отмечено, основные эксплуатационные характеристики зависят от количества углерода и равномерности его распределения. При маркировке указывается именно этот элемент, в рассматриваемом случае его концентрация 0,2%. Стоит учитывать, что в нормативной документации указывается предел, которому должна соответствовать марка: от 0,17 до 0,24%.
  3. В составе также отмечается большая концентрация магния и кремния: первый элемент в пределе 0,35-0,65%, второй 0,17-0,37%. Эти элементы также во многом определяют эксплуатационные характеристики металла.
  4. В составе есть и другие химические элементы, в том числе вредные. Их концентрация выдерживается в строгом пределе, так как их наличие становится причиной снижения прочности и надежности, прочности и ухудшению других качеств.
Читайте также:  Сталь угловая равнополочная марка стали 18пс

Несмотря на то, что процесс легирования существенно повышает стоимость металла, этот процесс позволяет существенно увеличить характеристики материала. Примером назовем добавление в состав хрома, за счет которого структура становится более устойчивой к воздействию влаги. Все нержавеющие стали имеют высокий показатель концентрации хрома в составе.

Сталь марки 20: расшифровка, характеристики, химический состав

Описание

Сталь 20 относится к конструкционным углеродистым качественным сталям. Применяется для изготовления деталей, требующих большой вязкости и не подвергающихся при эксплуатации напряжениям. В частности эта сталь применяется для изготовления неогневой аппаратуры нефтеперерабатывающих заводов: реакционных камер, эвапораторов, ректификационных колонн, газосепараторов, корпусов теплообмеников и других сосудов, а также приварных фланцев. В нефтяном машиностроении изготавливают сердечники поршней грязевых насосов, сухари кованных бурильных ключей, оси, соединительные муфты, пальцы крецкопфов и шестерни привода насоса компрессоров, различные болты, гайки, винты, шпильки, вилки, рычаги, шайбы и т.д.

После нормализации или без термообработки из стали 20 изготавливают крюки кранов, муфты, вкладыши подшипников и другие детали, работающие при температуре от -40 до 450 °С под давлением, после ХТО — шестерни, червяки и другие детали, к которым предъявляются требования высокой поверхностной твердости при невысокой прочности сердцевины.

Расшифровка стали 20

Число 20 указывает среднее содержание углерода в сотых долях процента, т.е. содержание углерода в стали 20 равно 0,2%.

Если сталь имеет обозначение 20А, то буква «А» в конце марки указывает, что сталь относится к категории высококачественной

Заменители и аналоги

  • С22 — Германия DIN
  • 1.0402 — Евронормы (EN)
  • 1020 — США (AISI, ASTM)
  • XC18, AF 40 C20, AF 42 — Франция (AFNOR)
  • 050A20- Великобритания BS
  • S 20 — Япония JIS
  • 12024 — Чехия (CSN)
  • 20 — Польша(PN/H)

Химический состав, % (ГОСТ 19281-2014)

C, углерод Mn, марганец Si, кремний P, фосфор S, сера Cr, хром Ni, никель Cu, медь As, мышьяк
не более
0,17-0,24 0,17-0,37 0,35-0,65 0,25 0,04 0,035 0,25 0,25 0,08

Термообработка Стали 20

Для повышения поверхностной твердости и, следовательно, увеличения стойкости против износа детали, изготовленные из стали 20, в ряде случаев подвергаются цементации или цианированию (например, пальцы крейцкопфов, шестерни, оси).

Цементация производится при температуре 910—930 °С; цементованные изделия закаливаются с температуры 780—800° С в воде и отпускаются при 150—180 °С. Цианируют, как правило, в ваннах из расплавленных солей, содержащих 20—25% цианистого натрия, при температуре 820—850 °С в течение 20-40 мин. При таком режиме цианирования можно получить цианированный глубиной 0,2—0,3 мм. После цианирования и закалки с отпуском при 150-180 °С изделия имеют твердость на поверхности HRC 62—64.

Механические свойства

ГОСТ Состояние поставки σв, МПа, δ5, % Ψ, % Твердость HB
, не более
не менее
ГОСТ 1050-88 Сталь калиброванная:
горячекатаная, кованая и серебрянка 2-й категории после нормализации 410 25 55
5-й категории после нагартовки 490 7 40
5-й категории после отжига или высокого отпуска 390 21 50
ГОСТ 10702-78 Сталь калиброванная и калиброванная со специальной отделкой:
после отпуска или отжига 390-490 50 163
после сфероидизирующего отжига 340-440 50 163
нагартованная без термообработки 490 7 40 207
ГОСТ 1577-93 Полоса нормализованная или горячекатаная 410 25 55
ГОСТ 4041-71 (образцы поперечные) Лист термообработанный 1 и 2-й категории 340-490 28 127

Механические свойства поковок (ГОСТ 8479-70)

Термообработка Сечение, мм КП σ0,2, МПа, σв, МПа, δ5, % Ψ, % KCU
, Дж/см2
Твердость HB
, не более
не более
Нормализация До 100 175 175 350 28 55 64 101-143
100-300 350 24 50 59 101-143
300-500 350 22 45 54 101-143
500-800 350 20 40 49 101-143
До 100 195 195 390 26 55 59 111-156
100-300 390 23 50 54 111-156
До 100 215 215 430 24 53 54 123-167
100-300 430 20 48 49 123-167
Закалка + отпуск 100-300 245 245 470 19 42 39 143-179

Механические свойства стали после ХТО

Режим ХТО Сечение, мм σ0,2, МПа, σв, МПа, δ5, % Ψ, % KCU
, Дж/см2
Твердость HB
, не более
не более
Цементация при 920- 950 °С, охл. на воздухе; закалка с 800-820 °С в воде; отпуск при 180- 200 “С, охл. на воздухе 50 290-340 490-590 18 45 54 HRC
э 156 — сердцевины;
НВ
55-63 — поверхности

Предел выносливости (n = 107)

Характеристики прочности σ-1, МПа τ-1, МПа
σ0,2 = 320 МПа, σв = 500 МПа, 206
σ0,2 = 310 МПа, σв = 520 МПа, 245
σ0,2 = 280 МПа, σв = 490 МПа, 225
127*1
σ0,2 = 280 МПа, σв = 420 МПа, 193
255 127*2

*1 — Нормализация при 910 °С, отпуск при 620 °С. *2 — Цементация при 930 °С, отпуск при 190 °С.

Механические свойства при повышенных температурах

t
исп, °С
σ0,2, МПа σв, МПа δ5, % ψ, % KCU
, Дж/см2
20 280 430 34 67 218
200 230 405 28 67 186
300 170 415 29 64 188
400 150 340 39 81 100
500 140 245 40 86 88
700 130 39 94
800 89 51 96
900 75 55 100
1000 47 3 100
1100 30 59 100
1200 20 64 100

Ударная вязкость KCU

Термообработка KCU
, Дж/см2, при температуре, °С
+20 -20 -40 -60
Отжиг 110 68 47 10
Нормализация 157 109 86 15-38

Примечание. σ4001/10000 = 98 МПа; σ4751/100000 = 35 МПа; σ4501/10000 = 120 МПа; σ4751/1000000 = 78 МПа; σ4501/1000 = 59 МПа;

Технологические свойства

Температура ковки, °С: начала 1280, конца 750. Охлаждение на воздухе. Свариваемость — сваривается без ограничений, кроме деталей после ХТО. Способы сварки: РДС, АДС под флюсом и газовой защитой, КТС. Обрабатываемость резанием — Kv

тв.сп = 1,7 и
Kv
б.ст = 1,6 в горячекатаном состоянии при
НВ
126—131 и σв =450—490 МПа. Флокеночувствительность — не чувствительна. Склонность к отпускной хрупкости — не склонна.

Температура критических точек, °С

Узнать еще

Сталь конструкционная рессорно-пружинная…

Сталь Ст2пс — углеродистая обыкновенного качества…

Сталь 60 конструкционная углеродистая сталь…

Углеродистая сталь марки Ст3кп — обыкновенно…

Основные характеристики и свойства

При выборе металла уделяется много внимания основным характеристикам. К ним отнесем:

  1. Показатель твердости. Он может варьировать в большом диапазоне и зависеть от того, была ли проведена термическая обработка. Твердость стали 20 выдерживается на уровне 163 МПа. Этого вполне достаточно для изготовления различных изделий, которые обладают высокой износостойкостью.
  2. Также учитывается и плотность. Менее плотные материалы применяются для изготовления изделий, которые будут обладать небольшим весом. В рассматриваемом случае показатель составляет 7,85 к/см3.
  3. Рассматривая основные характеристики учитывается предел текучести и предел прочности. Они рассматриваются при создании различных проектов. Металл Ст 20 может улучшаться для того, чтобы увеличить характеристики материала.
  4. Структура характеризуется тем, что не склонна к отпускной хрупкости и образованию флокенов.
  5. Проводимая термообработка стали 20 позволяет существенно увеличить срок службы изделия. Проводится она при определенных режимах. К примеру, для ковки структура нагревается до температуры 1 280 градусов Цельсия.
  6. При необходимости есть возможность проводить сваривание деталей.
  7. Ударная вязкость стали 20 определяет то, что металл часто применяется при изготовлении валов и других подобных изделий, которые могут использоваться при создании элементов, применяемых при создании различных механизмов. Модуль упругости также учитывается при рассмотрении основных свойств металла.
  8. Средний коэффициент теплопроводности определяет то, что структура может нагреваться достаточно быстро, но при этом тепло отводится с высокой эффективностью.

Механические свойства стали 20 определяют довольно широкое распространение этой марки в машиностроительной и других область промышленности. Как ранее было отмечено, технические характеристики могут улучшаться при проведении термической обработки или легировании. Перестроение структуры металла позволяет повысить твердость поверхностного слоя, при добавлении других химических веществ могут придаваться особые качества, к примеру, коррозионная стойкость.

Термическая обработка предусматривает изменение структуры за счет оказания воздействия определенной температуры. Критические точки выбираются в зависимости от особенностей химического состава. К особенностям подобной процедуры отнесем следующие моменты:

  1. Для оказания требуемого воздействия применяется специальное оборудование. Примером можно назвать доменные и индукционные печи. На протяжении длительного периода использовали именно доменные печи, но они уступают индукционным. Второй вариант исполнения подходит для установки в небольших мастерских.
  2. Критические точки учитываются при проведении рассматриваемой процедуры. Стоит учитывать, что они уже были выявлены для всех металлов, поэтому не нужно проводить исследования повторно.
  3. Заготовка разогревается до требуемой температуры, после чего происходит первичное перестроение структуры. Время выдержки также является важным показателем, который должен учитываться, как и скорость нагрева.
  4. Уделяется внимание и процессу охлаждения. Слишком большие заготовки охлаждаются на воздухе, так как возникают проблемы с созданием требующейся среды. На протяжении длительного периода охлаждение проводилось в воде, но это приводило к появлению окалины. Обеспечить более высокое качество термической обработки возможно за счет применения масла в качестве охлаждающей среды. Однако, при охлаждении в масле следует учитывать высокую вероятность образования токсичного дыма и воспламенения поверхности от высокой температуры.
Читайте также:  Какая сталь дороже ст3 или ст20

Во многих случаях после термической обработки образуются поверхностные дефекты. Именно поэтому процедура применяется для заготовок или изделий, которые созданы с учетом припуска. После закалки часто проводится отпуск, который позволяет снять внутренние напряжения и снизить вероятность повреждения изделия при падении или возникновении ударной нагрузки.

Сталь 20ХН3А конструкционная легированная

Стали заменители

Зарубежные аналоги

ВНИМАНИЕ. Возможность замены определяется в каждом конкретном случае после оценки и сравнения свойств сталей

Расшифровка

Согласно ГОСТ 4543-2016 цифра 20 в обозначении стали указывает среднюю массовую долю углерода в стали в сотых долях процента, т.е. углерода в стали 20ХН3А около 0,2% Буква Х указывает что в стали содержится хром, отсутствие цифр за буквой указывает, что хрома в стали содержится до 1,5%. Буква Н указывает что в стали содержится никель, цифра 3 за буквой указывает, что никеле в стали содержится примерно до 3%. Буква А в конце обозначения марки стали указывает, что сталь 20ХН3А является высококачественной, т.е. с повышенными требованиями к химическому составу и макроструктуре металлопродукции из нее по сравнению с качественной сталью.

Вид поставки

  • Сортовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 2879-88.
  • Калиброванный пругок ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73.
  • Шлифованный пруток и серебрянка ГОСТ 14955-77. Полоса ГОСТ 103-76.
  • Поковка и кованая заготовка ГОСТ 1133-71, ГОСТ 8479-70. Труба ОСТ 14-21-77.

Характеристики и применение

Сталь 20ХН3А относится к стали высокой прокаливаемости. Наряду с высокой прокаливаемостью, обладает очень высокими механическими свойствами. Преимщества этой стали по сравнению с менее легированными проявляется лишь в изделиях диаметром или толщиной более 75-100 мм.

Сталь 20ХН3А применяется для изготовления деталей (в том числе цементуемых деталей) к которым предъявляются требования высокой прочности, пластичности и вязкости сердцевины и высокой поверхностной твердости, работающие под действием ударных нагрузок и при отрицательных температурах.

  • шестерни,
  • валы,
  • втулки,
  • силовые шпильки,
  • болты,
  • муфты,
  • червяки и другие цементируемые детали

В нефтеной, нефтехимической и газовой промышленности сталь 20ХН3А применяется после цементации для изготовления высоконагруженных деталей, работающих при больших скоростях и ударных нагрузках:

  • шестерен,
  • кулачковых муфт,
  • силовых шпилек,
  • валиков,
  • втулок,
  • зубчатых,
  • колес тяжелонагруженных и быстроходных зубчатых передач буровых установок,
  • собачек роторных клиньев,
  • сухарей трубных ключей и т. д.

Эту сталь используют также для изготовления шарошек, и лап буровых долот.

Цементация этой стали проводится при температуре 930-960 °C. После цементации рекомендуется проводить двойную закалку с низким отпуском. Первая закалка обычно производится с цементационного нагрева в масле, вторая закалка с температуры 750-790°С, отпуск — при температуре 180-200°С.

Для уменьшения количества остаточного аустенита в цементованном слое после первой закалки рекомендуется проводить высокий отпуск при температуре 630-650°С.

Температура критических точек, °С

Химический состав, % (ГОСТ 4543-71)

Химический состав (ГОСТ 4543-2016)

ПРИМЕЧАНИЯ: В стали всех марок, за исключением легированных вольфрамом, молибденом, ванадием и титаном, допускается массовая доля остаточных элементов, не более:

  • вольфрама — 0,20 %,
  • молибдена — 0,11 %,
  • ванадия — 0,05 %
  • остаточного или преднамеренно введенного титана — не более 0,03 %.
  • Для цементуемых сталей допускается введение алюминия, при этом массовая доля общего алюминия должна быть не менее 0,020 %.

Применение стали 20ХН3А для изготовления крепежных деталей (ГОСТ 32569-2013)

Технические требования Допустимые параметры эксплуатации Назначение
Температура стенки, °С Давление среды, МПа (кгс/см2), не более
СТП 26.260.2043 От -70 до +425 16(160) Шпильки, болты, гайки

Применение стали 20ХН3А для изготовления крепежных деталей (ГОСТ 33259-2015)

Стандарт или ТУ на материал Параметры применения
Болты, шпильки Гайки
Температура рабочей среды, ºС РN, кгс/cм2,не более Температура рабочей среды, ºС РN, кгс/cм2,не более
ГОСТ 4543 От –70 до 425 PN 250 От –70 до 425 PN 250

Условия применения стали 20ХН3А для корпусов, крышек, фланцев, мембран и узла затвора,изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)

НД на поставку Температура рабочей среды(стенки), °С Дополнительные указания по применению
Сортовой прокат ГОСТ 4543.Поковки ГОСТ 8479 От -70 до 450 Для несварных узлов арматуры,эксплуатируемой в макроклиматическом районе с холодным климатом

Условия применения стали 20ХН3А для крепежных деталей арматуры (ГОСТ 33260-2015)

Стандарт или ТУ на материал Параметры применения
Болты, шпильки, винты Гайки Плоские шайбы
Температура среды, ºС Давление номинальное РN, МПа (кгс/cм2) Температура среды, ºС Давление номинальное РN, МПа (кгс/cм2) Температура среды, ºС Давление номинальное РN, МПа (кгс/cм2)
ГОСТ 4543 От -70 до 425 Не регламентируется От -70 до 425 Не регламентируется От -70 до 450 Не регламентируется

Применение стали 20ХН3А для шпинделей и штоков (ГОСТ 33260-2015)

НД на поставку Температура рабочей среды (стенки), °С Дополнительные указания по применению
Сортовой прокат ГОСТ 4543, ГОСТ 1051 От -70 до 450 Применяется для арматуры, эксплуатируемой в макроклиматическом районе с холодным климатом, после улучшающей термообработки (закалка и высокий отпуск)

Твердость стали 20ХН3А по Бринелю

Марка стали Твердость в отожженном или отпущенном состоянии, НВ
Диаметр отпечатка в мм, не менее Число твердости, не более
20ХНЗА 3,9 241

Термообработка

Сталь 20ХН3А может подвергаться улучшению. Закалка стали этой марки производится в масле с температуры 820 — 860 °C с последующим отпуском при температуре 550-650 °C, иногда с низким отпуском при температуре 200-220 °C.

При проведении термической обработки необходимо учитывать значительную склонность этой стали к отпускной хрупкости, в связи в чем изделия из стали 20ХН3А при высоком отпуске следует охлаждать быстро (например, в масле). Кроме того, необходимо иметь в виду, что после нормального отжига не достигается достаточного понижения твердости и сталь 20ХН3А характеризуется плохой обрабатываемостью, поэтому в качестве предварительной термической обработки рекомендуется изотермический отжиг или длительная выдержка при температуре 640-650 °С.

Механические свойства

Источник Состояние поставки Сечение, мм КП σ0,2, МПа σв, МПа δ5, % ψ, % KCU, Дж/см2 Твердость HB, не более
не менее
ГОСТ 4543-71 Пруток. Закалка с 820 °С в масле; отпуск при 500 °С, охл. в воде или масле 15 735 930 12 55 108
ГОСТ 8479-70 Поковка. Закалка+отпуск До 100 590 685 590 685 735 835 14 13 45 42 59 59 235-277 262-311
Цементация при 920-950 °С; нормализация при 870-890 °С, охл. на воздухе*1; отпуск при 630-660°С, охл. на воздухе*2; закалка с 790-810°С в масле; отпуск при 180-200°С, охл. на воздухе 100 690 830 11 50 69 240*2 HRCэ 57-63*3
  • *1 Операции применяются для ответственных деталей сложной конфигурации с целью понижения устойчивости остаточного аустенита в цементационном слое,получение более высокой и равномерной твердости с поверхности после закалки и низкого отпуска и уменьшения деформации.
  • *2 Сердцевина
  • *3 Поверхность

Механические свойства в зависимости от сечения

Сечение, мм σ0,2, МПа σв, МПа δ5, % ψ, % KCU, Дж/см2 Твердость HRCэ поверхности
Закалка с 850 °С в масле; отпуск при 200 °С, охл. на воздухе
5 1220 1420 12 55 86 44
15 1180 1370 13 65 76 44
20 1080 1270 13 65 89 44
Закалка с 880 °С в масле; отпуск при 600 °С, охл. на воздухе
30 700 800 20 70 167
50 610 730 19 71 167
80 580 700 23 68 167
220 510 660 14 51 167
220*1 570 690 23 67 157
Читайте также:  Вес 1м2 оцинкованной стали толщ 0 5мм

ПРИМЕЧАНИЕ: *1Место вырезки образца — край.

Механические свойства в зависимости от температуры отпуска

tотп, °С σ0,2, МПа σв, МПа δ5, % ψ, % KCU, Дж/см2 Твердость HRCэ
200 1270 1510 15 60 73 43
300 1260 1370 12 62 54 42
400 1180 1260 13 64 59 39
500 960 1000 19 66 83 32
600 720 780 24 73 162 22

ПРИМЕЧАНИЕ: Нормализация при 860°С, охл. на воздухе; закалка с 810 °С в масле.

Механические свойства металлопродукции (ГОСТ 4543-2016)

Режим термической обработки Механические свойства, не менее Размер сечения заготовок для термической обработки (диаметр круга или сторона квадрата), мм
Закалка Отпуск Предел текучести στ, Н/мм2 Временное сопротивление σδ, Н/мм2 Относительное Ударная вязкость KCU, Дж/см2
Температура,°С Среда охлаждения Температура,°С Среда охлаждения Удлинение, δ5,% Cужение, ψ,%
1-й закалки или нормализации 2-й закалки
820 Масло 500 Вода или масло 735 930 12 55 108 15
  1. При термической обработке заготовок или образцов по режимам, указанным в настоящей таблице, допускаются следующие отклонения по температуре нагрева:
      при закалке, нормализации ±15 °С;
  2. при низком отпуске ±30 °С;
  3. при высоком отпуске ±50 °С.
  4. Металлопродукцию сечением менее указанного в настоящей таблице подвергают термической обработке в полном сечении.
  5. Допускается проводить термическую обработку на готовых образцах.
  6. Допускается перед закалкой проводить нормализацию. Для металлопродукции, предназначенной для закалки токами высокой частоты (ТВЧ), нормализацию перед закалкой проводят с согласия заказчика.
  7. Допускается проводить испытания металлопродукции из стали всех марок после одинарной закалки, при условии соблюдения норм, приведенных в настоящей таблице.
  8. Для металлопродукции круглого сечения испытание на ударный изгиб проводят, начиная с диаметра 12 мм и более.
  9. Для металлопродукции с нормируемым временным сопротивлением не менее 1180 Н/мм2 допускается понижение норм ударной вязкости на 9,8 Дж/см2 при одновременном повышении временного сопротивления не менее чем на 98 Н/мм2.
  10. Нормы механических свойств, указанные в настоящей таблице, относятся к образцам отобранным от металлопродукции диаметром или толщиной до 80 мм включительно.
  11. При контроле механических свойств металлопродукции диаметром или толщиной свыше 80 до 150 мм включительно допускается понижение относительного удлинения на 2 абс. %, относительного сужения на 5 абс. % и ударной вязкости на 10 %. При контроле механических свойств металлопродукции диаметром

или толщиной свыше 150 мм допускается понижение относительного удлинения на 3 абс. %, относительного сужения на 10 абс. % и ударной вязкости на 15 %.

  • При контроле механических свойств металлопродукции диаметром или толщиной свыше 100 мм на перекованной (перекатанной) пробе размером сечения от 90 до 100 мм включительно нормы механических свойств должны соответствовать указанным в настоящей таблице.
  • Предел выносливости при n=10

    Термообработка σ-1, МПа τ-1, МПа
    Закалка с 820 °С в масле; отпуск при 200 °С; σв = 960 МПа 382
    Закалка с 820 °С в масле; отпуск при 500 °С; σв = 730 МПа 338 225
    Закалка с 800 °С в масле; отпуск при 500 °С;σв = 940 МПа 421

    Ударная вязкость прутков KCU

    Сечение заготовки, мм Термообработка KCU, Дж/см2 при температуре, °С
    +20 -20 -40 -50(-60)
    10 Закалка с 850 °С в масле; отпуск при 200 °С 86 85 64
    30 Закалка с 880 °С в масле; отпуск при 560 °С 167 69 64
    50 То же 167 83 73
    80 167 69
    100 Нормализация при 860°С, охл. на воздухе Закалка с 810°С в масле; отпуск при 600°С 196 122 100 (86)
    220 Закалка с 880°С в масле; отпуск при 630°С 167 118 78

    Технологические свойства

    • Температура ковки, °С: начала 1220, конца 800. Заготовка сечением до 100 мм охлаждается на воздухе, сечения 101-300 мм — в яме.
    • Свариваемость — ограниченно свариваемая. Способы сварки: РДС, АДС под флюсом.
    • Обрабатываемость резанием — Kv б.ст. = 0,95 в горячекатаном состоянии при НВ 177 и σв=610 МПа.
    • Склонность к отпускной хрупкости — склонна.
    • Флокеночувствительность — чувствительна.

    Прокаливаемость (ГОСТ 4543-71)

    Полоса прокаливаемости стали 20ХНЗА после нормализации при 850 °С и закалки с 830 °С приведена на рисунке.

    Критический диаметр d

    Количество мартенсита, % Критическая твердость HRCэ d, мм, после закалки
    в воде в масле
    50 32-37 70-96 44-62
    90 39-44 42-64 20-38

    Плотность ρп кг/см3 при температуре испытаний, °С

    Коэффициент линейного расширения α*106, К-1

    Марка стали α*106, К-1 при температуре испытаний, °С
    20-100 20-200 20-300 20-400 20-500 20-600 20-700 20-800
    20ХН3А 11,5 11,7 12,0 12,6 12,8 13,2 13,6 11,2

    Удельная теплоемкость c, Дж/(кг*К)

    Марка стали c, Дж/(кг*К), при температуре испытаний, °С
    20-100 20-200 20-300 20-400 20-500 20-600 20-700 20-800 20-900 20-1000
    20ХН3А 494 507 523 536 565 586 624 703

    Коэффициент теплопроводности λ Вт/(м*К)

    Марка Стали λ Вт/(м*К), при температуре испытаний, °С
    20 100 200 300 400 500 600 700 800 900
    20ХН3А 36 35 34 33 33 31 31 30 28

    Удельное электросопротивление ρ нОм*м

    марка стали ρ нОм*м, при температуре испытаний, °С
    20 100 200 300 400 500 600 700 800 900
    20ХН3А 270 300 350 450 550 650

    Модуль Юнга (нормальной упругости) Е, ГПа

    Марка Стали При температуре испытаний, °С
    20 100 200 300 400 500 600 700 800 900
    20ХН3А 212 204 194 188 169 169 153 138 132

    Модуль упругости при сдвиге на кручение G, ГПа

    Марка стали При температуре испытаний, °С
    20 100 200 300 400 500 600 700 800 900
    20ХН3А 83 80 76 70 68 66 59 53 51

    Узнать еще

    Сталь инструментальная легированная…

    Сталь конструкционная легированная…

    Сталь 15Х конструкционная легированная…

    Сталь 60 конструкционная углеродистая сталь…

    Область применения

    Низкая стоимость определяет то, что сталь 20, применение которой связано с изготовлением различных изделий, стали использовать для создания различного рода заготовок. Рассматривая особенности стали марки 20 и ее области применения, отметим следующие моменты:

    1. Чаще всего применяется при котлостроении. Примером назовем изготовление труб и нагревательных элементов различного назначения.
    2. В промышленность поставляются заготовки в виде прутка или листа.
    3. Очень часто сталь улучшается путем цементации. Это позволяет увеличить твердость поверхности, но пластичную сердцевину. Примером можно назвать различные оси, кулачки и валики, пальцы и шпиндели, толкательные клапана, пальцы рессора и другие элементы, получившие широкое распространение в машиностроении.
    4. На производственные площадки поставляется прокат с различным диаметром. При этом заготовка может обрабатываться резанием при применении токарного и фрезерного, сверлильного и другого оборудования.
    5. Трубы изготавливаются при применении электросварки. Для этого применяется листовая сталь, которая сваривается в точке соприкосновения. При применении метода горячей деформации получают бесшовные трубы, которые обладают высокими эксплуатационными характеристиками.

    Подобные стали применяются на протяжении длительного периода. Стоит учитывать, что температура применения довольно низкая. Другими словами, структура может быстро нагреваться, за счет чего существенно повышается пластичность. Также металл не может выдерживать воздействие низкой температуры, так как она делает структуру более хрупкой. Существенно увеличить область применения стали 20 смогли при правильном проведении термической обработки, а также легировании структуры.

    Аналоги стали 20

    Как ранее было отмечено, рассматриваемые стандарты маркировки применяются исключительно при производстве металла на территории стран СНГ. Зарубежные производители проводят выпуск большого количества аналогов, которые обладают схожими эксплуатационными характеристиками. Производство стали 20 налажено в США, Германии, Японии и многих других европейских странах. Зарубежные аналоги могут обладать несколько иным химическим составом, но эксплуатационные качества во многом схожи. Если рассматривать аналоги с другим химическим составом, то можно уделить внимание стали 30, 40Х и другим легированным сплавам. По своим основным качествам они несколько отличаются, но все же могут применяться при изготовлении идентичных изделий.

    В заключение отметим, что низкая концентрация углерода определяет необходимость в проведении термической обработки. Очень часто выполняется закалка, а также отпуск, которые позволяют повысить твердость и износостойкость поверхности, но при этом снизить хрупкость. Проводится цементация и другие процедуры внесения химических веществ в поверхностный слой. К примеру, цементация позволяет существенно увеличить твердость изделия. Многие процессы предусматривают применение специального оборудования. Поэтому в домашних условиях провести улучшение металла не получится.

    Источник

    Adblock
    detector