Марки стали по прочности таблица
Каким образом производится испытание на прочность
Прочностные испытания на сопротивление разрыву проводятся на специальных испытательных стендах. В них неподвижно закрепляется один конец испытываемого образца, а к другому присоединяют крепление привода, электромеханического или гидравлического. Этот привод создает плавно увеличивающее усилие, действующее на разрыв образца, или же на его изгиб или скручивание.
Электронная система контроля фиксирует усилие растяжения и относительное удлинение, и другие виды деформации образца.
Виды пределов прочности
Предел прочности — один из главных механических параметров стали, равно как и любого другого конструкционного материала.
Эта величина используется при прочностных расчетах деталей и конструкций, судя по ней, решают, применим ли данный материал в конкретной сфере или нужно подбирать более прочный.
Различают следующие виды предела прочности при:
- сжатии — определяет способность материала сопротивляться давлению внешней силы;
- изгибе — влияет на гибкость деталей;
- кручении – показывает, насколько материал пригоден для нагруженных приводных валов, передающих крутящий момент;
- растяжении.
Виды испытаний прочности материалов
Научное название параметра, используемое в стандартах и других официальных документах — временное сопротивление разрыву.
Предел прочности стали
На сегодняшний день сталь все еще является наиболее применяемым конструкционным материалом, понемногу уступая свои позиции различным пластмассам и композитным материалам. От корректного расчета пределов прочности металла зависит его долговечность, надежность и безопасность в эксплуатации.
Предел прочности стали зависит от ее марки и изменяется в пределах от 300 Мпа у обычной низкоуглеродистой конструкционной стали до 900 Мпа у специальных высоколегированных марок.
На значение параметра влияют:
- химический состав сплава;
- термические процедуры, способствующие упрочнению материалов: закалка, отпуск, отжиг и т.д.
Некоторые примеси снижают прочность, и от них стараются избавляться на этапе отливки и проката, другие, наоборот, повышают. Их специально добавляют в состав сплава.
Маркировка сталей по российским стандартам
Маркировка сталей по российским стандартам позволяет определить состав металла и, частично, принадлежность к определенному виду.
При наличии углерода в стали более 1 %, его количество в маркировке не указывается. Марка стали включает буквенные обозначения легирующих добавок с указанием их количества в десятых и сотых долях процента, но если содержание компонента менее 1,5 %, то в маркировке присутствует только буквенное обозначение.
Читать также: Простейший импульсный блок питания своими руками схема
Кроме химического состава, маркировка содержит символы, характеризующие назначение стали, степень ее качества.
Условный предел текучести
Кроме предела прочности, в инженерных расчетах широко применяется связанное с ним понятие-предел текучести, обозначаемый σт. Он равен величине напряжения сопротивления разрыву, которое необходимо создать в материале, для того, чтобы деформация продолжала расти без наращивания нагрузки. Это состояние материала непосредственно предшествует его разрушению.
На микроуровне при таких напряжениях начинают рваться межатомные связи в кристаллической решетке, а на оставшиеся связи увеличивается удельная нагрузка.
Общие сведения и характеристики сталей
С точки зрения конструктора, наибольшую важность для сплавов, работающих в обычных условиях, имеют физико-механические параметры стали. В отдельных случаях, когда изделию предстоит работать в условиях экстремально высоких или низких температур, высокого давления, повышенной влажности, под воздействием агрессивных сред — не меньшую важность приобретают и химические свойства стали. Как физико-механические, так и химические свойства сплавов во многом определяются их химическим составом.
Влияние содержание углерода на свойства сталей
По мере увеличения процентной доли углерода происходит снижение пластичности вещества с одновременным ростом прочности и твердости. Этот эффект наблюдается до приблизительно 1% доли, далее начинается снижение прочностных характеристик.
Повышение доли углерода также повышает порог хладоемкости, это используется при создании морозоустойчивых и криогенных марок.
Влияние углерода на механические свойства стали
Рост содержания С приводит к ухудшению литейных свойств, отрицательно влияет на способность материала к механической обработке.
Добавки марганца и кремния
Mn содержится в большинстве марок стали. Его применяют для вытеснения из расплава кислорода и серы. Рост содержания Mn до определенного предела (2%) улучшает такие параметры обрабатываемости, как ковкость и свариваемость. После этого предела дальнейшее увеличение содержания ведет к образованию трещин при термообработке.
Влияние кремния на свойства сталей
Si применяется в роли раскислителя, используемого при выплавке стальных сплавов и определяет тип стали. В спокойных высокоуглеродистых марках должно содержаться не более 0,6% кремния. Для полуспокойных марок этот предел еще ниже — 0,1 %.
При производстве ферритов кремний увеличивает их прочностные параметры, не понижая пластичности. Этот эффект сохраняется до порогового содержания в 0,4%.
Влияние легирующих добавок на свойства стали
В сочетании с Mn или Mo кремний способствует росту закаливаемости, а вместе с Сг и Ni повышает коррозионную устойчивость сплавов.
Азот и кислород в сплаве
Эти самые распространенные в земной атмосфере газы вредно влияют на прочностные свойства. Образуемые ими соединения в виде включений в кристаллическую структуру существенно снижают прочностные параметры и пластичность.
Виды сталей и особенности их маркировки
Различные области применения сталей требуют наличие у нее строго определенных свойств – физических, химических. В одном случае требуется максимально высокая износоустойчивость, в других – повышенная устойчивость против коррозии, в третьих внимание уделяется магнитным свойствам.
Видов стали много. Основная масса выплавляемого металла идет в производство конструкционной стали, в которую входят такие виды:
- Строительная. Низколегированная сталь с хорошей свариваемостью. Основное назначение – производство строительных конструкций.
- Пружинная. Имеют высокую упругость, усталостную прочность, сопротивление разрушению. Идет на производство пружин, рессор.
- Подшипниковая. Основной критерий – высокая износоустойчивость, прочность, низкая текучесть. Применяется для производства узлов и составляющих подшипников различного назначения.
- Коррозионностойкая (нержавеющая). Высоколегированная сталь с повышенной стойкостью к воздействию агрессивных веществ.
- Жаропрочная. Отличается способностью длительное время работать в нагруженном состоянии при повышенных температурах. Область применения – детали двигателей, в том числе газотурбинных.
- Инструментальная. Применяется для производства метало- и деревообрабатывающих, измерительных инструментов.
- Быстрорежущая. Для изготовления инструмента металлообрабатывающего оборудования.
- Цементируемая. Применяется при изготовлении деталей и узлов, работающих при больших динамических нагрузках в условиях поверхностного износа.
Читать также: Циркуляционные насосы для отопления частных домов установка
При расшифровке обозначений нужно учитывать, что каждому из видов соответствует строго определенная буква в маркировке.
Легирующие добавки в составе сплавов
Это вещества, намеренно добавляемые в расплав для улучшения свойств сплава и доведения его параметров до требуемых. Одни из них добавляются в больших количествах (более процента), другие — в очень малых. Наиболее часто применяю следующие легирующие добавки:
- Хром. Применяется для повышения прокаливаемости и твердости. Доля – 0,8-0,2%.
- Бор. Улучшает хладноломкость и радиационную стойкость. Доля – 0,003%.
- Титан. Добавляется для улучшения структуры Cr-Mn сплавов. Доля – 0,1%.
- Молибден. Повышает прочностные характеристики и коррозионную стойкость, снижает хрупкость. Доля – 0,15-0,45%.
- Ванадий. Улучшает прочностные параметры и упругость. Доля – 0,1-0,3%.
- Никель. Способствует росту прочностных характеристик и прокаливаемости, однако при этом ведет к увеличению хрупкости. Этот эффект компенсируют одновременным добавлением молибдена.
Металлурги используют и более сложные комбинации легирующих добавок, добиваясь получения уникальных сочетаний физико-механических свойств стали. Стоимость таких марок в несколько раз (а то и десятков раз) превышает стоимость обычных низкоуглеродистых сталей. Применяются они для особо ответственных конструкций и узлов.
Углеродистая сталь марки ст3сп — обыкновенного качества
Заменители
Иностранные аналоги
Европа EN 10027-1 (EN 10027-2) | S235JR (1.0038) |
Германи DIN | RSt37-2, USt37-2 |
США (AISI, ASTM) | A238/C |
Франция (AFNOR) | E 24-2 |
Великобритания BS | 40B |
Чехия (CSN) | 11375 |
Польша PN/H | St3SV, St3SJ, St3S4U |
Расшифровка стали Ст3сп
- Буквы «В» обозначает, что данная сталь, поставляемая по механическим свойствам и с отдельными требованиями по химическому составу,
- Буквы «Ст» обозначает «Сталь»,
- цифра 3 обозначает условный номер марки в зависимости от химического состава,
- буквы «сп» — спокойная (степень раскисления стали),
- Если после буквы «сп» следует цифра, то она обозначает категорию. Если цифры нет, то категория стали 1. В зависимости от категории сталь имеет различные нормируемые показатели (см. ниже).
Вид поставки
- Сортовой прокат, в том числе фасонный: ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 535-88, ГОСТ 2879-88, ГОСТ 19771-93, ГОСТ 19772-93, ГОСТ 8278-83, ГОСТ 8281-80, ГОСТ 8282-83, ГОСТ 8283-93, ГОСТ 380-94, ГОСТ 8509-93, ГОСТ 8510-86, ГОСТ 8239-89.
- Лист толстый ГОСТ 19903-74.
- Лист тонкий ГОСТ 19903-74.
- Лента ГОСТ 503-81, ГОСТ 6009-74.
- Полоса ГОСТ 103-76, ГОСТ 82-70, ГОСТ 535-88.
- Поковки и кованые заготовки ГОСТ 8479-70.
- Трубы ГОСТ 8734-75, ГОСТ 10706-76, ГОСТ 10705-80.
Характеристики, применение и назначение
Сталь Ст3сп относится к конструкционным углеродистым сталям обыкновенного качества общего назначения и применяется для изготовления следующих деталей и конструкций:
- Несущие элементы сварных и несварных конструкций и деталей, работающих при положительных температурах.
- Фасонный и листовой прокат (5-й категории) — для несущих элементов сварных конструкций, работающих при переменных нагрузках: при толщине проката до 25 мм в интервале температур от -40 до +425 °C;
- при толщине проката свыше 25 мм в интервале от -20 до +425 °C при условии поставки с гарантируемой свариваемостью.
По международному стандарту ИСО 630:1995 сталь Ст3сп обозначается Е 235-С (Fe 360-C)
Ст.3 является широко распространенной сталью в нефтяной, нефтехимической и нефтегазовой промышленности. Из стали этой марки можно изготавливать сварные и штампованные изделия:
- рамы,
- каркасы
- салазки тяжелого нефтепромыслового оборудования
- основания (блоки)
- детали буровых и эксплуатационных вышек и мачт
- тормозные ленты
- шкивы
- кулачковые соединительные муфты буровых установок
- ключи
- заглушки
- крышки грязевых насосов
- стойки
- кронштейны
- корпуса редукторов
- станины буровых установок и т.д.
Температура критических точек, °C
Химический состав, % (ГОСТ 380-94)
Химический состав, % (ГОСТ 380-2005)
Марка стали | Массовая доля химических элементов | ||
углерода | марганца | кремния | |
Ст3сп | 0,14-0,22 | 0,40-0,65 | 0,15-0,30 |
- Массовая доля хрома, никеля и меди в стали Ст3сп, должна быть не более 0,30% каждого.
- Массовая доля серы в стали Ст3сп, должна быть не более 0,050%, фосфора — не более 0,040%.
- Массовая доля азота в стали должна быть не более:
- выплавленной в электропечах — 0,012%;
- мартеновской и конвертерной — 0,010%.
- Массовая доля мышьяка должна быть не более 0,080%.
Нормируемые показатели стали Ст3сп по категориям проката (ГОСТ 535-2005)
Катег- ория | Химич- еский состав | Времен- ное сопротив- ление σв | Предел текуче- сти σт | Относи- тельное удли- нение δ5 | Изгиб в холо- дном сос- тоянии | Ударная вязкость | ||||
KCU | KCV | |||||||||
При темпе- ратуре, °C | После механи- ческого старения | При темпе- ратуре, °C | ||||||||
+ 20 | -20 | + 20 | -20 | |||||||
1 | — | + | + | + | + | — | — | — | — | — |
2 | + | + | + | + | + | — | — | — | — | — |
3 | + | + | + | + | + | + | — | — | — | — |
4 | + | + | + | + | + | — | + | — | — | — |
5 | + | + | + | + | + | — | + | + | — | — |
6 | + | + | + | + | + | — | — | — | + | — |
7 | + | + | + | + | + | — | — | — | — | + |
- Знак «+» означает, что показатель нормируется, знак «-» означает, что показатель не нормируется.
- Химический состав стали по плавочному анализу или в готовом прокате — в соответствии с заказом.
Параметры применения электросварных прямошовных труб из стали Ст3сп (ГОСТ 32569-2013)
Марка стали, класс прочности, стандарт или ТУ | СтЗсп5 ГОСТ 380 | СтЗсп4-5 ГОСТ 380 | СтЗсп4 ГОСТ 380 | ||||
Технические требования на трубы (стандарт или ТУ) | ГОСТ 10705 группа В | ГОСТ 10706 группа В | ТУ 14-3-377-87 | ТУ 14-3-1399-95 | ГОСТ 10706 группа В | ||
Номинальный диаметр, мм | 10-500 | 450-1400 | 200-400 | 200, 350, 400, 500 | 400-1400 | ||
Виды испытаний и требований (стандарт или ТУ) | ГОСТ 10705 | ГОСТ 10706 | ТУ 14-3-377-87 | ТУ 14-3-1399-95 | ГОСТ 10706 | ||
Транспортируемая среда (см. обозначения таблицы 5.1) | Среды групп Б, В | Среды группы В Среды группы Б, кроме СУГ | Среды группы В, кроме пара и горячей воды | Все среды, кроме группы А(а) и СУГ | Среды группы Б, кроме СУГ | ||
Расчетные параметры трубопровода | Максимальное давление, МПа | ≤1,6 | ≤2,5 | ≤1,6 | |||
Максимальная температура, °С | 300 | 200 | 300 | 200 | |||
Толщина стенки трубы, мм | — | ≤12 | — | ≤10 | — | ||
Минимальная температура в зависимости от толщины стенки трубы при напряжении в стенке от внутренго давления [σ], °C | более 0,35[σ] | минус 20 | |||||
не более 0,35[σ] | минус 40 |
ПРИМЕЧАНИЕ. Группы сред смотри таблица 5.1 ГОСТ 32569-2013
Параметры применения электросварных спиральношовных труб из стали Ст3сп (ГОСТ 32569-2013)
Марка стали, класс прочности, стандарт или ТУ | СтЗспЗ, СтЗсп2 ГОСТ 380 | СтЗсп5 ГОСТ 380 | ||
Технические требования на трубы (стандарт или ТУ) | ТУ 14-3-943-80 | ТУ 14-3-954-80 | ||
Номинальный диаметр, мм | 200-500 | 500-1400 | ||
Виды испытаний и требований (стандарт или ТУ) | ТУ 14-3-943-80 | ТУ 14-3-954-80 с учетом требований п.2.2.10 ГОСТ 32569-2013 | ||
Транспортируемая среда (см. обозначения таблицы 5.1) | Все среды, кроме группы А и СУГ | Все среды, кроме группы А и СУГ | ||
Расчетные параметры трубопровода | Максимальное давление, МПа | ≤1,6 | ≤2,5 | |
Максимальная температура, °С | 200 | 300 | ||
Толщина стенки трубы, мм | ≤6 | ≤12 | ||
Минимальная температура в зависимости от толщины стенки трубы при напряжении в стенке от внутренго давления [σ], °C | более 0,35[σ] | минус 30 | минус 20 | |
не более 0,35[σ] | — | минус 20 |
ПРИМЕЧАНИЕ. Группы сред смотри таблица 5.1 ГОСТ 32569-2013
Применение стали Ст3сп для крепежных деталей(ГОСТ 32569-2013)
Марка стали | Технические требования | Допустимые параметры эксплуатации | Назначение | |
Температура стенки, °С | Давление среды, МПа (кгс/см2), не более | |||
СтЗсп4 ГОСТ 380 | СТП 26.260.2043 | От -20 до +300 | 2,5 (25) | Шпильки, болты, гайки |
10 (100) | Шайбы |
Условия применения стали Ст3сп для корпусов, крышек, фланцев, мембран и узла затвора, изготовленных из проката, поковок (штамповок) (ГОСТ 33260-2015)
Материал | НД на поставку | Температура рабочей среды (стенки), °С | Дополнительные указания по применению |
Ст3сп ГОСТ 380 | Поковки ГОСТ 8479 Сортовой прокат ГОСТ 535, категории 3-5 | От -30 до 300 | Для сварных узлов арматуры на давление PN≤2,5 МПа (25 кгс/см2) |
Лист ГОСТ 14637, категории 3-6 | От -20 до 300 | Для сварных узлов арматуры на давление PN 5 МПа (50 кгс/см2). Для категорий 4, 5 толщина листа для Ст3сп не более 25 мм; для категории 3 толщина листа не более 40 мм |
Стойкость конструкционных материалов против щелевой эрозии (ГОСТ 33260-2015)
Группа стойкости | Балл | Эрозионная стойкость по отношению к стали 12X18H10T | Материал |
Нестойкие | 6 | 0,005-0,05 | Cтали ВСт3сп3 и ее сварные соединения. |
ПРИМЕЧАНИЕ. Коэффициент эрозионной стойкости материала представляет собой отношение скорости эрозионного износа материала к скорости эрозионного износа стали 12Х18Н10Т (принятой за 1).
Механические свойства проката при растяжении, а также условия испытаний на изгиб в холодном состоянии (ГОСТ 535-2005)
Марка стали | Ст3сп | |
Временное сопротивление σв, Н/мм2 (кгс/мм2), для проката толщин, мм | до 10 включ. | 380-490 (39-50) |
св.10 | 370-480 (38-49) | |
Предел текучести σт, Н/мм2 (кгс/мм2), для проката толщин, мм (не менее) | до 10 включ. | 255(26) |
св. 10 до 20 включ. | 245(25) | |
св. 20 до 40 включ. | 235(24) | |
св.40 до 100 включ. | 225(23) | |
св. 100 | 205(21) | |
Относительное удлинение δ5, %, для проката толщин, мм (не менее) | до 20 включ. | 26 |
св.20 до 40 включ. | 25 | |
св.40 | 23 | |
Изгиб до параллельности сторон (а — толщина образца, d — диаметр оправки), для проката толщин, мм | до 20 включ. | d = a |
св.20 | d = 2a |
- По согласованию изготовителя с потребителем допускается:
- снижение предела текучести на 10 Н/мм2 (1 кгс/мм2) для фасонного проката толщиной свыше 20 мм;
- снижение относительного удлинения на 1 % (абс.) для фасонного проката всех толщин.
- Допускается превышение верхнего предела временного сопротивления на 49,0 Н/мм2 (5 кгс/мм2), а по согласованию с потребителем — без ограничения верхнего предела временного сопротивления при условии выполнения остальных норм. По требованию потребителя превышение верхнего предела временного сопротивления не допускается.
Ударная вязкость проката (ГОСТ 535-2005)
Марка стали | Ст3сп | ||
Толщина проката, мм | Св. 5,0 до 10,0 включ. | ||
KCU, Дж/см2 (кгс*м/см2), не менее | Тип образца по ГОСТ 9454 | 2,3 | |
При температуре, °С | +20 | 108(11) | |
-20 | 49(5) | ||
После механического старения | 49(5) | ||
KCV, Дж/см2 (кгс*м/см2), не менее | Тип образца по ГОСТ 9454 | 12,13 | |
При температуре, °С | +20 | 34(3,5) | |
-20 | — |
- Знак «-» означает, что показатель не нормируется.
- Определение ударной вязкости проката круглого сечения проводят начиная с диаметра 12 мм, квадратного — начиная со стороны квадрата 11 мм.
- Допускается снижение величины ударной вязкости на одном образце на 30 %, при этом среднее значение должно быть не ниже норм, указанных в настоящей таблице.
- Ударную вязкость KCV определяют при толщине проката до 20 мм включительно.
Механические свойства проката
ГОСТ | Состояние поставки | Сечение, мм | σ0,2, МПа | σв, МПа | δ5(δ4),% |
не менее | |||||
ГОСТ 380-94 | Прокат горячекатаный | До 20 | 245 | 370-480 | 26 |
Св. 20 до 40 | 235 | 25 | |||
Св. 40 до 100 | 225 | 23 | |||
Св. 100 | 205 | 23 | |||
ГОСТ 16523-89(образцыпоперечные) | Лист горячекатаный | До 2,0 вкл. | — | 370-480 | (20) |
Св. 2,0 до 3,9 вкл. | (22) | ||||
Лист холоднокатаный | До 2,0 вкл. | — | 370-480 | (22) | |
Св. 2,0 до 3,9 вкл. | (24) |
Механические свойства поковок
ГОСТ | Термообработка | Сечение, мм | σ0,2, МПа | σв, МПа | δ5,% | ψ, % | KCU, Дж/см2 | Твердость НВ |
не менее | ||||||||
ГОСТ 8479-70 | Нормализация | До 100 | 175 | 353 | 28 | 55 | 64 | 101-143 |
100-300 | 175 | 353 | 24 | 50 | 59 | |||
До 100 | 195 | 392 | 26 | 55 | 59 | 111-156 | ||
100-300 | 195 | 392 | 23 | 50 | 54 |
Ударная вязкость KCU (ГОСТ 380-94)
Вид проката | Направление вырезки образца | Сечение, мм | KCU, Дж/см2 | ||
+20 °C | -20 °C | после механического старения | |||
не менее | |||||
Лист | Поперечное | 5-9 | 78 | 39 | 39 |
10-25 | 68 | 29 | 29 | ||
26-40 | 49 | — | — | ||
Широкая полоса | Продольное | 5-9 | 98 | 49 | 49 |
10-25 | 78 | 29 | 29 | ||
26-40 | 68 | — | — | ||
Сортовой и фасонный | То же | 5-9 | 108 | 49 | 49 |
10-25 | 98 | 29 | 29 | ||
26-40 | 88 | — | — |
Механические свойства при повышенных температурах
tисп, °C | σ0,2, МПа | σв, МПа | δ5,% | ψ, % | KCU, Дж/см2 |
Горячекатаная заготовка размерами 140×120 мм | |||||
20 | 220 | 445 | 33 | 59 | 154 |
300 | 205 | — | — | — | 199 |
500 | 180 | 285 | 34 | 80 | 119 |
Лист и фасонный прокат в горячекатаном состоянии толщиной до 30 мм | |||||
20 | 205-340 | 420-520 | 28-37 | 56-68 | — |
200 | 215-285 | — | — | — | — |
300 | 05-265 | — | — | — | — |
400 | 155-255 | 275-490 | 34-43 | 60-73 | — |
500 | 125-175 | 215-390 | 36-43 | 60-73 | — |
Образец диаметром 6 мм, длиной 30 мм кованый и нормализованный. Скорость деформирования 16 мм/мин, скорость деформации 0,009 1/с | |||||
700 | 73 | 100 | 57 | 96 | — |
800 | 51 | 63 | 95 | 95 | — |
900 | 38 | 65 | 84 | 100 | — |
1000 | 25 | 43 | 79 | 100 | — |
1100 | 19 | 31 | 80 | 100 | — |
1200 | 14 | 25 | 84 | 100 | — |
Предел выносливости
ПРИМЕЧАНИЕ. Лист толщиной 40 мм в горячекатаном состоянии.
Технологические свойства
Температура ковки, °С: начала 1300, конца 750. Охлаждение на воздухе.
Обрабатываемость резанием — Kv тв.спл = 1,8 и Kv б.ст = 1,6 в горячекатаном состоянии при НВ 124 и σв = 400 МПа.
Флокеночувствительность — не чувствительна.
Склонность к отпускной хрупкости — не склонна.
Сварка
Свариваемость — сваривается без ограничений; способы сварки: РДС, АДС пс флюсом и газовой защитой, ЭШС и КТС. Для толщины свыше 36 мм рекомендуется подогрев и последующая термообработка.
Допускается применение стали ст3сп для сварных соединений трубопроводной арматуры при температуре рабочей среды (стенки) от -20 до 300 °C.
Сварочные материалы для электродуговой сварки
Марка основного материала | Тип электрода по ГОСТ, ТУ, (рекомендуемые марки электродов) | Температура применения, °С | Дополнительные указания |
Ст3сп | Э42, Э46 ГОСТ 9467 (АНО-4, АНО-5,ОЗС-6) | Не ниже -15 | — |
Э42А, Э46А ГОСТ 9467 (УОНИ-13/45, УОНИ-13/45А, 0ЗС-2, СМ-11) | Не ниже -30 | — | |
Э50А ГОСТ 9467 (УОНИ-13/55) | ниже -30 до -40 | После сварки термообработка – нормализация плюс отпуск (630–660) °С, 2 ч |
Сварочные материалы для сварки в защитных газах
Марка основного материала | Марка сварочной проволоки по ГОСТ 2246, ТУ, рекомендуемый защитный газ или смесь газов | Температура применения, °С |
Ст3сп | Св-08Г2С Углекислый газ ГОСТ 8050, аргон ГОСТ 10157 | От -20 до 300 |
Сварочные материалы для сварки под флюсом
Марка основного материала | Марка сварочной проволоки по ГОСТ 2246, ТУ, Рекомендуемая марка флюса по ГОСТ 9087 | Дополнительные указания | ||
Электроды, тип по ГОСТ 10052 (рекомендуемые марки) | Сварочная проволока, ГОСТ 2246 или ТУ | |||
Группа А | Группа Б | |||
10Х18Н9Л, 12Х18Н9ТЛ ГОСТ 977 08Х18Н10Т, 12Х18Н9Т, 12Х18Н10Т, 12Х18Н9 ГОСТ 5632 08Х18Н10Т-ВД ТУ 14-1-3581 10Х18Н9, 10Х18Н9-ВД, 10Х18Н9-Ш ТУ 108.11.937 15Х18Н12СЧТЮ (ЭИ 654) ГОСТ 5632 10Х17Н13М3Т (ЭИ 432) 10Х17Н13М2Т (ЭИ 448) ГОСТ 5632 | Ст3сп ГОСТ 380 | Э-10Х15Н25М6АГ2 (ЭА-395/9) Э-10Х25Н13Г2 (ОЗЛ-6, ЗИО-8), Э-11Х15Н25М6АГ2 (НИАТ-5, ЦТ-10) | Св-07Х23Н13 | Сварное соединение неравнопрочное |
Э-10Х15Н25М6АГ2 (ЭА-395/9) 582/23, 855/51 | Св-10Х16Н25АМ6 Cв-06Х15Н35Г7М6Б Cв-03Х15Н35Г7М6Б | Сварное соединение неравнопрочное. Сварочные материалы применяются для изделий, подведомственных Ростехнадзор |
Сварочные материалы для сварки стали ст3сп с другими сталями
Марки свариваемых сталей | Сварочные материалы | Температура применения, °С |
Ст3сп | Св-08, Св-08А АН-348А, ОСЦ-45 АНЦ-1 | Не ниже -20 |
Температура предварительного и сопутствующего подогрева и отпуска при сварке конструкций из стали ст3сп
Марки свариваемых сталей | Толщина свариваемых кромок, мм | Температура предварительного и сопутствующего подогрева, °С | Интервал между окончанием сварки и началом отпуска, час | Температура отпуска, °С | |
сварка | наплавка материалами аустенитного класса | ||||
Ст3сп | До 36 | Не требуется | Не требуется | Не ограничивается | Не требуется |
Свыше 36 до 100 | 630-660 | ||||
Свыше 100 | 100 |
Рекомендуемые режимы сварки при исправлении дефектов сварных швов
Сварочные материалы | Основной материал | Диаметр электрода, проволоки, мм | Сила сварочного тока, А | Напряжение на дуге, В |
УОНИ 13/45А* УОНИ 13/55 | Ст3сп | 3,0 4,0 5,0 | От 100 до 130 От 160 до 210 От 220 до 280 | От 22 до 26 |
Св-08Г2С | 1,6 | От 100 до 120 | От 12 до 14 | |
2,0 | От 140 до 160 |
ПРИМЕЧАНИЕ. * — наряду с маркой электродов УОНИ 13/… возможно применение марки УОНИИ 13/…, в зависимости от обозначения марки в ТУ завода изготовителя электродов.
Режимы электродуговой сварки образцов и изделий
Марка электродов | Основной материал | Диаметр электрода, мм | Сила сварочного тока, А | Напряжение на дуге, В |
УОНИ 13/45А*, УОНИ 13/55 | Ст3сп | 3 4 5 | От 110 до 130 От 160 до 210 От 220 до 280 | От 22 до 26 |
ПРИМЕЧАНИЕ. * — наряду с маркой электродов УОНИ 13/… возможно применение марки УОНИИ 13/…, в зависимости от обозначения марки в ТУ завода изготовителя электродов.
Режимы аргонодуговой сварки образцов для входного контроля сварочных материалов
Марка электродов | Основной материал | Диаметр электрода, мм | Сила сварочного тока, А | Напряжение на дуге, В |
Св-08Г2С | Ст3сп | 1,6 2,0 3,0 | От 100 до 120 От 150 до 170 От 200 до 240 | От 12 до 14 |
Коэффициент линейного расширения α*106, К-1
Марка стали | Температура, К (°С) | |||||||||||
323 (50) | 373 (100) | 423 (150) | 473 (200) | 523 (250) | 573 (300) | 623 (350) | 673 (400) | 723 (450) | 773 (500) | 823 (550) | 873 (600) | |
Ст3сп5 | 11,5 | 11,9 | 12,2 | 12,5 | 12,8 | 13,1 | 13,4 | 13,6 | 13,8 | 14,0 | 14,2 | 14,4 |
Модуль Юнга (нормальной упругости) Е, ГПа
Марка стали | Температура, К (°С) | ||||||||||
293 (20) | 323 (50) | 373 (100) | 423 (150) | 473 (200) | 523 (250) | 573 (300) | 623 (350) | 673 (400) | 723 (450) | 773 (500) | |
Ст3сп5, | 200 (2,04) | 197 (2,01) | 195 (1,99) | 192 (1,96) | 190 (1,94) | 185 (1,88) | 180 (1,84) | 175 (1,79) | 170 (1,73) | 165 (1,68) | 160 (1,63) |
Коэффициент теплопроводности λ Вт/(м*К)
Марка Стали | λ Вт/(м*К), при температуре испытаний, °С | |||||||
20 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | |
Ст3сп | — | 55 | 54 | 50 | 45 | 39 | 34 | 30 |
Узнать еще
Сталь 45Х конструкционная легированная…
Сталь 35Х конструкционная легированная…
Сталь 95Х18 конструкционная подшипниковая…
Сталь 40 конструкционная углеродистая качественная…
Источник