Меню

Какие устройства стали совместимы с компьютером за последние годы

Как изменились гаджеты за последние 10 лет

Технический прогресс уже не первое десятилетие радует нас совершенно фантастическими девайсами, при этом, сбавлять темпы современная IT-индустрия явно не собирается. Чтобы наглядно продемонстрировать тот путь, который прошли гаджеты за последние 10 лет, мы сравним устройства из 2009 года с теми, что лежат у нас в карманах сегодня.

Apple iPhone

Начнем с самого популярного в мире смартфона, коим в свое время стал представленный летом 2009 iPhone 3Gs – тогда новинке потребовалось на это всего 4 месяца. Это была первая s-модель в линейке iPhone, буква s в названии означала speed, поскольку Apple тогда обещала двукратный прирост скорости в сравнении с iPhone 3G. В те времена такая разница в быстродействии была заметна безо всяких бенчмарков и использования секундомера при запуске приложений: 3Gs заметно обыгрывал предшественника как по производительности, так и по стабильности работы, что позволило ему продержаться до iOS 6, которая вышла в 2012.

За десять лет айфон преобразился кардинальным образом и любая модель 2019 года в десятки раз мощнее своего предка. Но сильнее всего эволюция яблочных смартфонов заметна при взгляде на внешний вид гигантского 6.5-дюймового 11 Pro Max и миниатюрного по нынешним меркам 3Gs с крохотным экраном диагональю 3.5”.

Смартфоны Nokia

Говоря о мобильных устройствах десятилетней давности нельзя не упомянуть легендарную на тот момент финскую компанию Nokia. До появления iOS и Android на рынке мобильных операционных систем царствовала Symbian (была, конечно, Windows Mobile, но эта платформа была далеко не так популярна, как финский конкурент). Именно в 2009 и начался финансовый крах Nokia, который послужил поводом к продаже компании американскому софтверному гиганту Microsoft и переходу на нежизнеспособные ОС Windows Phone и Maemo. Впоследствии же большую часть акций Nokia выкупила китайская корпорация HMD Global, которая сегодня и занимается производством смартфонов под брендом Nokia. Что касается конкретных устройств, то флагманский аппарат Nokia N900 хоть и работал под управлением провальной Maemo OS, обладал характеристиками, не уступающими тому же iPhone 3Gs: 3.5-дюймовый дисплей с разрешением 800×480, высокопроизводительный процессор с частотой 600 МГц, 256 Мб ОЗУ и пятимегапиксельная камера с возможностью съемки QVGA-видео.

Современные смартфоны Nokia все-таки сдались под давлением конкурентов и работают под управлением Android. Да, техническая составляющая осталась на высоте: топовый Nokia 8.1 имеет 4 Гб оперативки, чипсет Snapdragon 710 и двойную камеру на 12 + 13 Мп, но если железо в N900 считалось лучшим на мобильном рынке, то характеристики Nokia 8.1 являются просто хорошими, не отличаясь от конфигураций сотен других смартфонов.

Но печальнее всего то, что произошло с дизайном – N900 представлял из себя горизонтальный слайдер с QWERTY-клавиатурой, его современный аналог превратился в безликий черный “кирпичик” без единой нотки оригинальных решений.

Android-смартфоны

Здесь лучше всего проводить сравнение на примере аппаратов одного бренда, а из достойных Android-вендоров, доживших до сегодняшнего дня остался только Samsung. Одним из первых корейских смартфонов на ОС Android является Samsung GT-i7500. В плане технических характеристик он несколько уступал купертиновскому конкуренту, но с другой стороны, на момент выхода он стоил заметно дешевле (25 000 рублей, эх, сейчас бы такие цены). Отличительной особенностью всех Android-смартфонов того времени был чистый Android, поскольку тогда просто-напросто не существовало калейдоскопа различных оболочек от каждого производителя.

Помимо высокой плавности работы и качественной сборки, к плюсам GT-i7500 относились 8 Гб оперативной памяти – огромное преимущество по тем временам, когда не существовало миллиона облачных сервисов и весь контент приходилось хранить на устройстве, — а также основная камера на 5 мегапикселей, сделавшая ощутимый рывок вперед для всей мобильной индустрии.

В 2019 на флагманы Samsung равняются многие другие Android-производители, а сами смартфоны помимо чудовищно увеличившейся мощности обзавелись большими стильными корпусами. Если не брать во внимание самый дорогой смартфон компании – фаблет Note 10, — то лучшим детищем Samsung (да и всего рынка Android-смартфонов) можно назвать Galaxy S10, который оснащен семинанометровым восьмиядерным процессором Qualcomm Snapdragon 855, 8 Гб ОЗУ и быстрым накопителем объемом 128 Гб – сегодня даже не каждый компьютер может удивить таким сетапом.

Портативные консоли

В 2009 шишу портативных игровых консолей монополизировала Sony со своей PlayStation Portable. Ее успех был обеспечен низкой стоимостью в районе 200-250$ и большим количеством тайтлов. Кроме того, в скором времени появились и более тонкие версии PSP-2000 и 3000 совместимые с контроллером DualShock 3. Но время шло, требования пользователей становились все жестче, и в конечном итоге Sony проиграла эту битву мобильному геймингу с лавиной донатных поделок.

Впрочем, два года назад у портативных консолей открылось второе дыхание, когда другие японцы – Nintendo – представили свою Nintendo Switch, ставшую настоящим суперхитом. У этого гаджета яркий 6.2-дюймовый дисплей, CPU Tegra X1 и 4 Гб оперативной памяти – все вместе это обеспечивает непревзойденный игровой опыт. Продажи консоли не собираются снижаться и, возможно, именно поэтому Nintendo уже выпустила более доступный вариант Nintendo Switch Lite, а также уговорила поляков из CD Project RED портировать на Switch один из самых знаменитых проектов нашего времени – Witcher 3.

Ультрабуки

Еще 10 лет назад лучшими компактными ноутбуками считались представители семейства XPS от Dell, если точнее, модель Adamo. Хотя этот компьютер увидел свет в 2009, его массогабаритные показатели до сих пор впечатляют: толщина Dell XPS Adamo составляла 10.3 мм при весе в 1.43 кг и13-дюймовом экране! Несмотря на столь “стройный” корпус, вычислительная мощность ультрабука не пострадала и обеспечивалась процессором Intel Core 2 Duo, а также 4 Гб ОЗУ, что в 2009 было довольно большой редкостью даже в десктопах. Минусов у XPS Adamo было два: во-первых, это высокая стоимость (около 3000 долларов) и крайне низкое время автономной работы, едва дотягивающее до 2 часов.

Сегодня же на Олимпе тонких Windows-ноутбуков расположилась компания Acer со своей топовой моделью Swift 7 2019. Эта машинка использует все чудеса миниатюризации, которые позволили тайванцам встроить 14-дюймовую матрицу в корпус весом всего 890 г и толщиной 9.95 мм. И, разумеется, данный трюк никак не повлиял на производительность: Acer Swift 7 2019 может похвастаться чипом Core i5/i7, SSD-диском на 256 Гб и восемью гигабайтами оперативной памяти. Кроме того, в отличие от Dell, Acer удалось сохранить автономность на достойном уровне – не самый емкий по сегодняшним меркам аккумулятор на 2770 мАч позволяет вам на 7-8 часов забыть о необходимости подзарядки. К сожалению, идеальных продуктов не существует и в этот раз главным недостатком является сумасшедший ценник в 150 000 рублей.

Ультрабуки от Apple

Сверхкомпактные MacBook’и также не стояли на месте и прошли немалый путь за последнее десятилетие. Правда, они с самого момента своего появления были весьма и весьма компактными, помните впечатляющую презентацию MacBook Air 2008, когда Стив Джобс вытащил полноценный компьютер из бумажного конверта? Но одними инновациями сыт не будешь, поэтому с точки зрения потребителя MB Air 2008 получился, мягко говоря, неудачным: оснащался интегрированной графикой, медленно работал, нагревался и обладал очень ограниченным количеством портов. А годом позже вышел MacBook Air 2009 и исправил все недостатки предшественника: был обновлен процессор, увеличилась батарея, встроенная графика сменилась в разы более быстрой карточкой Nvidia 9400M и появился привычный всем видеовыход Mini DisplayPort.

В последующие несколько лет линейка Air довольно бурно развивалась, но затем Apple забыла об ее существовании, и абсолютно новая модель появилась лишь в 2018. Но несмотря на кажущуюся новизну, из заметных изменений в этом поколении можно отметить разве что экран с разрешением QHD, снизившийся вес и свежий дизайн, производительность MB Air 2018 оставляет желать лучшего и находится на уровне своих предшественников образца 2015 года.

Игровые ноутбуки

Делу – время, потехе – час. Поэтому давайте перейдем от рабочих станций к игровым. В целом, за 10 лет образ игрового ноутбука не изменился: это по-прежнему здоровенные дорогущие пятикилограммовые махины, не имеющие ничего общего со словом ‘мобильность’. Если рассматривать ситуацию более предметно, то нынешние устройства стали гораздо мощнее – например, флагманский ноутбук M17x от популярного в 2009 году бренда Alienware вряд ли справится с любой современной AAA-игрой “на максималках”.

Читайте также:  Гастроемкость из нержавеющей стали косгу

Сегодня игровые ноутбуки обладают такой мощностью, что с их помощью можно чуть ли не ракеты в космос запускать. Пожалуй, наиболее ярким примером послужит Acer Predator 21x с двумя гигантскими блоками питания, процессором Core i7, 64 Гб ОЗУ и стоимостью свыше 700 тысяч рублей.

Источник

История развития компьютеров

Одним из первых устройств (V-IV вв. до н.э.), с которых, можно считать, началась история развития компьютеров, была специальная доска, названная впоследствии «абак». Вычисления на ней проводились перемещением костей или камней в углублениях досок из бронзы, камня, слоновой кости и тому подобное. В Греции абак существовал уже в V в. до н.э., у японцев он назывался «серобаян», у китайцев — «суанпань». В Древней Руси для счета применялось устройство, похожее на абак, — «дощаный счет». В XVII веке этот прибор принял вид привычных российских счетов.

Абак (V-IV вв. до н.э.)

Французский математик и философ Блез Паскаль в 1642 г. создал первую машину, получившую в честь своего создателя название — Паскалина. Механическое устройство в виде ящика со многими шестернями кроме сложения выполняла и вычитание. Данные вводились в машину с помощью поворота наборных колесиков, которые отвечали числам от 0 до 9. Ответ появлялся в верхней части металлического корпуса.

Паскалина

В 1673 году Готфрид Вильгельм Лейбниц создал механическое счетное устройство (ступенчатый вычислитель Лейбница — калькулятор Лейбница), которое впервые не только складывало и вычитало, а еще умножало, делило и вычисляло квадратный корень. Впоследствии колесо Лейбница стало прототипом для массовых счетных приборов — арифмометров.

Модель ступенчатого вычислителя Лейбница

Английский математик Чарльз Бэббидж разработал устройство, которое не только выполняло арифметические действия, но и сразу же печатало результаты. В 1832 г. была построена десятикратно уменьшенная модель из двух тысяч латунных деталей, которая весила три тонны, но была способна выполнять арифметические операции с точностью до шестого знака после запятой и вычислять производные второго порядка. Эта вычислительная машина стала прообразом настоящих компьютеров, называлась она дифференциальной машиной.

Дифференциальная машина

Суммирующий аппарат с непрерывной передачей десятков создает российский математик и механик Пафнутий Львович Чебышев. В этом аппарате достигнута автоматизация выполнения всех арифметических действий. В 1881 году была создана приставка к суммирующему аппарату для умножения и деления. Принцип непрерывной передачи десятков широко использовался в различных счетчиках и вычислительных машинах.

Суммирующий аппарат Чебышева

Автоматизированная обработка данных появилась в конце прошлого века в США. Герман Холлерит создал устройство — Табулятор Холлерита — в котором информация, нанесенная на перфокарты, расшифровывалось электрическим током.

Табулятор Холлерита

В 1936 году молодой ученый из Кембриджа Алан Тьюринг придумал мысленный счетный аппарат-компьютер, который существовал только на бумаге. Его «умная машина» действовала по определенному заданному алгоритму. В зависимости от алгоритма, воображаемая машина могла применяться для самых разнообразных целей. Однако в то время это были чисто теоретические рассуждения и схемы , которые послужили прототипом программируемого компьютера, как вычислительного устройства, которое обрабатывает данные в соответствии с определенной последовательностью команд.

Информационные революции в истории

В истории развития цивилизации произошло несколько информационных революций — преобразований социальных общественных отношений вследствие изменений в области обработки, сохранения и передачи информации.

Первая революция связана с изобретением письменности, что привело к гигантскому качественному и количественному скачку цивилизации. Появилась возможность передачи знаний от поколений к поколениям.

Вторая (середина XVI в.) революция вызвана изобретением книгопечатания, которое радикально изменило индустриальное общество, культуру, организацию деятельности.

Третья (конец XIX в.) революция с открытиями в области электричества, благодаря чему появились телеграф, телефон, радио, устройства, которые позволяют оперативно передавать и накапливать информацию в любом объеме.

Четвертая (с семидесятых годов XX в.) революция связана с изобретением микропроцессорной технологии и появлением персонального компьютера. На микропроцессорах и интегральных схемах создаются компьютеры, компьютерные сети, системы передачи данных (информационные коммуникации).

Этот период характеризуют три фундаментальные инновации:

  • переход от механических и электрических средств преобразования информации к электронным;
  • миниатюризация всех узлов, устройств, приборов, машин;
  • создание программно-управляемых устройств и процессов.

История развития компьютерной техники

Потребность в хранении, преобразовании и передачи информации у человека появилась значительно раньше, чем был создан телеграфный аппарат, первая телефонная станция и электронная вычислительная машина (ЭВМ). Фактически весь опыт, все знания, накопленные человечеством, так или иначе, способствовали появлению вычислительной техники. История создания ЭВМ — общее название электронных машин для выполнения вычислений — начинается далеко в прошлом и связана с развитием практически всех сторон жизни и деятельности человека. Сколько существует человеческая цивилизация, столько времени используется определенная автоматизация вычислений.

История развития компьютерной техники насчитывает около пяти десятилетий. За это время сменилось несколько поколений ЭВМ. Каждое следующее поколение отличалось новыми элементами (электронные лампы, транзисторы, интегральные схемы), технология изготовления которых была принципиально иной. В настоящее время существует общепринятая классификация поколений ЭВМ:

  • Первое поколение (1946 — начало 50-х гг.). Элементная база — электронные лампы. ЭВМ отличались большими габаритами, большим потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах.
  • Второе поколение (конец 50-х — начало 60-х гг.). Элементная база — полупроводниковые элементы. Улучшились по сравнению с ЭВМ предыдущего поколения практически все технические характеристики. Для программирования используются алгоритмические языки.
  • 3-е поколение (конец 60-х — конец 70-х). Элементная база — интегральные схемы, многослойный печатный монтаж. Резкое снижение габаритов ЭВМ, повышение их надежности, увеличение производительности. Доступ с удаленных терминалов.
  • Четвёртое поколение (с середины 70-х — конец 80-х). Элементная база — микропроцессоры, большие интегральные схемы. Улучшились технические характеристики. Массовый выпуск персональных компьютеров. Направления развития: мощные многопроцессорные вычислительные системы с высокой производительностью, создание дешевых микроЭВМ.
  • Пятое поколение (с середины 80-х гг.). Началась разработка интеллектуальных компьютеров, которая пока не увенчалась успехом. Внедрение во все сферы компьютерных сетей и их объединение, использование распределенной обработки данных, повсеместное применение компьютерных информационных технологий.

Вместе со сменой поколений ЭВМ менялся и характер их использования. Если сначала они создавались и использовались в основном для решения вычислительных задач, то в дальнейшем сфера их применения расширилась. Сюда можно отнести обработку информации, автоматизацию управления производственно-технологическими и научными процессами и многое другое.

Принципы работы компьютеров Конрада Цузе

Идея о возможности построения автоматизированного счетного аппарата пришла в голову немецкому инженеру Конраду Цузе ( Konrad Zuse ) и в 1934 г. Цузе сформулировал основные принципы, на которых должны работать будущие компьютеры:

  • двоичная система счисления;
  • использование устройств, работающих по принципу «да / нет» (логические 1 / 0);
  • полностью автоматизированный процесс работы вычислителя;
  • программное управление процессом вычислений;
  • поддержка арифметики с плавающей запятой;
  • использование памяти большой емкости.

Цузе первым в мире определил, что обработка данных начинается с бита (бит он называл «статусом да / нет», а формулы двоичной алгебры — условными суждениями), первым ввел термин «машинное слово» (Word), первым объединил в вычислители арифметические и логические операции, отметив, что «элементарная операция компьютера — проверка двух двоичных чисел на равенство. Результатом будет тоже двоичное число с двумя значениями (равно, не равно)».

Первое поколение — ЭВМ с электронными лампами

Первыми компьютерами следует считать британский Colossus (1943 г.) и американский ENIAC (Electronic Numeric Integrator, Analyzer and Computer, 1945 г.).

Colossus I — первая вычислительная машина на лампах, созданная англичанами в 1943 г., для раскодирования немецких военных шифров; она состояла из 1800 электронных ламп — устройств для хранения информации — и была одним из первых программируемых электронных цифровых компьютеров.

ENIAC — был создан для расчета артиллерийских таблиц баллистики; этот компьютер весил 30 тонн, занимал 1000 квадратных футов и потреблял 130-140 кВт электроэнергии. Компьютер содержал 17468 вакуумных ламп шестнадцати типов, 7200 кристаллических диодов и 4100 магнитных элементов, и содержались они в шкафах общим объемом около 100 м 3 . ENIAC имел производительность 5000 операций в секунду. Общая стоимость машины составляла $ 750 000. Потребность в потребления электричества — 174 кВт, общее занимаемое пространство — 300 м 2 .

ENIAC — устройство для расчета артиллерийских таблиц баллистики

Еще один представитель 1-го поколения ЭВМ, на который следует обратить внимание, это EDVAC (Electronic Discrete Variable Computer). EDVAC интересен тем, что в нем была сделана попытка записывать программы электронным способом в так называемых «ультразвуковых линиях задержки» с помощью ртутных трубок. В 126 таких линиях было возможно сохранять 1024 строк четырехзначных двоичных чисел. Это была «быстрая» память. В качестве «медленной »памяти предполагалось фиксировать числа и команды на магнитном проводе, однако этот метод оказался ненадежным, и пришлось вернуться к телетайпным лентам. EDVAC работал быстрее своего предшественника, сложение занимало 1 мкс, деление — 3 мкс. Он содержал всего 3,5 тыс. электронных ламп и располагался на 13 м 2 площади.

Читайте также:  Декораторы подготовили съемочную площадку утром стали съезжаться артисты

UNIVAC ( Universal Automatic Computer ) представлял собой электронное устройство с программами, хранящимися в памяти, которые вводились туда уже не с перфокарт, а с помощью магнитной ленты; это обеспечивало высокую скорость чтения и записи информации, а, следовательно, и более высокое быстродействие машины в целом. Одна лента могла содержать миллион символов, записанных в двоичной форме. Ленты могли хранить и программы, и промежуточные данные.

Представители I-го поколения ЭВМ: 1) Electronic Discrete Variable Computer; 2) Universal Automatic Computer

Второе поколение — ЭВМ на транзисторах.

Транзисторы пришли на смену электронным лампам в начале 60-х годов. Транзисторы (которые действуют как электрические переключатели), потребляя меньше электроэнергии и выделяя меньше тепла, занимают и меньше места. Объединение нескольких транзисторных схем на одной плате дает интегральную схему (chip — «щепка», «стружка» буквально, пластинка ). Транзисторы это счетчики двоичных чисел. Эти детали фиксируют два состояния — наличие тока и отсутствие тока, и тем самым обрабатывают информацию, представленную им именно в таком двоичном виде.

В 1953 г.. Уильям Шокли изобрел транзистор с p — n переходом ( junction transistor ). Транзистор заменяет электронную лампу и при этом работает с большей скоростью, выделяет очень мало тепла и почти не потребляет электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации: как устройства памяти стали применяться магнитные сердечники и магнитные барабаны, а уже в 60-е годы получило распространение хранение информации на дисках.

Один из первых компьютеров на транзисторах — Atlas Guidance Computer — был запущен в 1957 г. и использовался при управлении запуском ракеты Atlas.

Созданный в 1957 г.. RAMAC был недорогим компьютером с модульной внешней памятью на дисках, комбинированным оперативным запоминающим устройством на магнитных сердечниках и барабанах. И хотя этот компьютер еще не был полностью транзисторным, он отличался высокой работоспособностью и простотой обслуживания и пользовался большим спросом на рынке средств автоматизации делопроизводства в офисах. Поэтому для корпоративных заказчиков срочно выпустили уже «большой» RAMAC (IBM-305), для размещения 5 Мбайт данных системе RAMAC нужно было 50 дисков диаметром 24 дюйма. Созданная на основе этой модели информационная система безотказно обрабатывала массивы запросов на 10 языках.

В 1959 году IBM создала свой первый полностью транзисторный большой универсальный компьютер модели 7090, способный выполнять 229 тыс. операций в секунду — настоящий транзисторный мэйнфрейм. В 1964 году на основе двух 7090-х мейнфреймов американская авиакомпания SABRE впервые применила автоматизированную систему продажи и бронирования авиабилетов в 65 городах мира.

В 1960 году DEC представила первый в мире миникомпьютер — модель PDP-1 (Programmed Data Processor, программируемый процессор данных), компьютер с монитором и клавиатурой, который стал одним из самых заметных явлений на рынке. Этот компьютер был способен выполнять 100 000 операций в секунду. Сама машина занимала на полу всего 1,5 м 2 . PDP-1 стал, по сути, первой в мире игровой платформой благодаря студенту MIT Стиву Расселу, который написал для него компьютерную игрушку Star War!

Представители II-го поколения ЭВМ: 1) RAMAC ; 2) PDP -1

В 1968 году Digital впервые наладила серийное производство мини-компьютеров — это был PDP-8: цена их была около $ 10000, а размером модель была холодильник. Именно эту модель PDP-8 смогли покупать лаборатории, университеты и небольшие предприятия.

Отечественные компьютеры того времени можно охарактеризовать так: по архитектурным, схемным и функциональных решений они соответствовали своему времени, но их возможности были ограничены из-за несовершенства производственной и элементной базы. Наибольшей популярностью пользовались машины серии БЭСМ. Серийное производство, достаточно незначительное, началось выпуском ЭВМ «Урал-2» (1958), БЭСМ-2, « Минск-1» и « Урал-3» (все — 1959 г.). В 1960 г. пошли в серию « М-20» и «Урал-4». Максимальной производительностью в конце 1960 располагал «М-20» (4500 ламп, 35 тыс. полупроводниковых диодов, память на 4096 ячеек) — 20 тыс. операций в секунду. Первые компьютеры на полупроводниковых элементах ( «Раздан-2», «Минск — 2», «М-220» и «Днепр» ) находились еще в стадии разработки.

Третье поколение — малогабаритные ЭВМ на интегральных схемах

В 50-х и 60-х годах сборка электронного оборудования представляла трудоемкий процесс, который замедлялся возрастающей сложностью электронных схем. Так, например, компьютер типа CD1604 ( 1960 , Control Data Corp. ) , содержал около 100 тыс. диодов и 25 тыс. транзисторов.

В 1959 американцы Джек Сент Клэр Килби (фирма Texas Instruments) и Роберт Н. Нойс (фирма Fairchild Semiconductor) независимо друг от друга изобрели интегральную схему ( ИС ) — совокупность тысяч транзисторов, размещенных на одном кристалле кремния внутри микросхемы.

Производство компьютеров на ИС (микросхемами их стали называть позже) было гораздо дешевле, чем на транзисторах. Благодаря этому многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения различных задач. В эти годы производство компьютеров приобрело промышленные масштабы.

В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах.

Представитель III-го поколения ЭВМ — ЕС-1022

Четвертое поколение — персональные компьютеры на процессорах

Предшественниками IBM PC были Apple II, Radio Shack TRS-80, Atari 400 и 800, Commodore 64 и Commodore PET.

Рождения персональных компьютеров (ПК, PC) с полным основанием связывают с процессорами Intel. Корпорация была основана в середине июня 1968 г. с тех пор Intel превратилась в крупнейшего в мире производителя микропроцессоров с числом сотрудников более 64 тысяч. Целью Intel было создание полупроводниковой памяти и , чтобы выжить, фирма стала брать и сторонние заказы на разработку полупроводниковых устройств.

В 1971 г.. Intel получила заказ на разработку набора из 12 микросхем для программируемых микрокалькуляторов, но инженерам Intel создание 12 специализированных чипов показалось громоздким и неэффективным. Задача сокращения номенклатуры микросхем была решена путем создания «спарки» с полупроводниковой памяти и исполнительного устройства, способного работать по командам, хранящимся в ней. Это был прорыв в философии создания вычислительных средств : универсальное логическое устройство в виде 4-разрядного центрального процессорного устройства i4004, который позже был назван первый микропроцессором. Он представлял собой набор из 4 чипов, в числе которых был один чип, управляемый командами, которые хранились в полупроводниковой внутренней памяти.

Как коммерческая разработка, микрокомпьютер (так тогда называлась микросхема) появился на рынке 11 ноября 1971 под названием 4004 : 4 битный, содержащий 2300 транзисторов, тактовая частота 60 кГц, стоимость — $ 200. В 1972 г. компания Intel выпустила восьмибитный микропроцессор 8008, а в 1974 г. — его усовершенствованную версию Intel-8080, которая к концу 70-х годов стала стандартом для микрокомпьютерной индустрии. Уже в 1973 году во Франции появляется первый компьютер на базе процессора 8080 — Micral. По разным причинам этот процессор не имел успеха в Америке (в Советском Союзе он был скопирован и выпускался долгое время под названием 580ВМ80). Тогда же группа инженеров ушла из Intel и образовала фирму Zilog. Наиболее громким ее продуктом является Z80, который имеет расширенный набор команд 8080 и, что обеспечило его коммерческий успех для бытовых приборов, обходился одним напряжением питания 5В. На его основе был создан, в частности, компьютер ZX-Spectrum (иногда его называют по имени создателя — Sinclair), ставший практически прообразом Home PC середины 80-х. В 1981 г. Intel выпускает 16-разрядный процессор 8086 и 8088 — аналог 8086, за исключением внешней 8-битной шины данных (вся периферия тогда была еще 8-битной).

Конкурент Intel, компьютер Apple II отличался тем, что не был вполне законченным аппаратом и оставалась некоторая свобода для доработки непосредственно пользователем — можно было устанавливать дополнительные интерфейсные платы, платы памяти и др. Именно эта особенность, которую впоследствии стали называть «открытой архитектурой», стала его основным преимуществом. Успеху Apple II способствовали еще две новинки, разработаные в 1978 году. Недорогой накопитель на гибких дисках, и первая программа для коммерческих расчетов — электронная таблица VisiCalc.

Читайте также:  Комплект метизов км4300161 оцинкованная сталь км4300161 fk4300161pfs

Большой популярностью в 70-х годах пользовался компьютер Altair-8800, построенный на основе процессора Intel -8080. Хотя возможности Altair были довольно ограничены — оперативная память составляла всего 4 Kb, клавиатура и экран отсутствовали, его появление было встречено с большим энтузиазмом. Он был выпущен на рынок в 1975 году, и в первые месяцы было продано несколько тысяч комплектов машины.

Представители IV -го поколения ЭВМ: а) Micral; б) Apple II

Этот компьютер, разработанный фирмой MITS, продавался по почте в виде набора деталей для самостоятельной сборки. Весь комплект для сборки стоил $ 397, тогда как только один процессор от Intel продавался за $360.

Распространение ПК к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ — фирма IBM в 1979 выпустила IBM PC на базе процессора 8088. Существующее в начале 80-х годов программное обеспечение было ориентировано на обработку текстов и простых электронных таблиц, а сама мысль о том, что «микрокомпьютер» может стать привычным и необходимым устройством на работе и дома, казалась невероятной.

12 августа 1981 года IBM представила Personal Computer (PC), ставший, в сочетании с программным обеспечением от Microsoft, стандартом для всего парка ПК современного мира. Цена модели IBM PC с монохромным дисплеем составила около $3.000, с цветным — $6.000. Конфигурация IBM PC: процессор Intel 8088 с частотой 4,77 МГц и 29 тысячами транзисторов, 64 Кб оперативной памяти, 1 флоппи-дисковод емкостью 160 Кб, звук — обычный встроенный динамик. В это время запуск приложений и работа с ними были настоящей мукой: из-за отсутствия жесткого диска приходилось все время менять дискеты, не было ни «мыши», ни графического оконного пользовательского интерфейса, ни точного соответствия между изображением на экране и конечным результатом (WYSIWYG). Цветная графика была крайне примитивна, о трехмерной анимации или фотообработке не было и речи, однако история развития персональных компьютеров началась именно с этой модели.

В 1984 году IBM представила еще две новинки. Во-первых, была выпущена модель для домашних пользователей, названная PCjr на базе процессора 8088, котрая была оснащена едва ли не первой беспроводной клавиатурой, но успеха на рынке эта модель не добилась.

Вторая новинка — IBM PC AT. Важнейшая особенность : переход на микропроцессоры более высоких уровней (80286 с цифровым сопроцессором 80287) с сохранением совместимости с предыдущими моделями. Этот компьютер оказался законодателем стандартов на много лет вперед в целом ряде отношений: здесь впервые появилась 16-разрядная шина расширений (остающаяся стандартной и по сей день) и графические адаптеры EGA с разрешением 640х350 при глубине представления цвета 16 бит.

В 1984 г. состоялся выпуск первых компьютеров Macintosh с графическим интерфейсом, манипулятором «мышь» и многими другими атрибутами пользовательского интерфейса, без которых не мыслятся современные настольные компьютеры. Пользователей новый интерфейс не оставил равнодушными, но революционный компьютер не был совместим ни с прежними программами, ни с аппаратными компонентами. А в тогдашних корпорациях уже стали нормальными рабочими инструментами WordPerfect и Lotus 1-2-3. Пользователи уже привыкли и приспособились к символьному интерфейса DOS. С их точки зрения, Macintosh выглядел даже как-то несерьезно.

Пятое поколение компьютеров (с 1985 и по наше время)

Отличительные признаки V -го поколения:

  1. Новые технологии производства.
  2. Отказ от традиционных языков программирования таких, как Кобол и Фортран в пользу языков с повышенными возможностями манипулирования символами и с элементами логического программирования (Пролог и Лисп).
  3. Акцент на новые архитектуры (например, на архитектуру потока данных).
  4. Новые способы ввода-вывода, удобные для пользователя (например, распознавание речи и образов, синтеза речи, обработка сообщений на естественном языке)
  5. Искусственный интеллект (то есть автоматизация процессов решения задач, получения выводов, манипулирования знаниями)

Именно на рубеже 80-90-х сформировался альянс Windows-Intel. Когда в начале 1989 г. Intel выпустила микропроцессор 486, производители компьютеров не стали дожидаться примера со стороны IBM или Compaq. Началась гонка, в которую вступили десятки фирм. Но все новые компьютеры были чрезвычайно похожи друг на друга — их объединяла совместимость с Windows и процессоры от Intel.

В 1989 г. был выпущен процессор i486. Он имел встроенный математический сопроцессор, конвейер и встроенный кэш первого уровня.

Направления развития компьютеров

Нейрокомпьютеры можно отнести к шестому поколению ЭВМ. Несмотря на то, что реальное применение нейросетей началось относительно недавно, нейрокомпьютингу как научному направлению пошел седьмой десяток лет, а первый нейрокомпьютер был построен в 1958 году. Разработчиком машины был Фрэнк Розенблатт, который подарил своему детищу имя Mark I.

Теория нейронных сетей впервые была обозначена в работе МакКаллока и Питтса в 1943 г.: любую арифметическую или логическую функцию можно реализовать с помощью простой нейронной сети. Интерес к нейрокомпьютингу снова вспыхнул в начале 80-х годов и был подогрет новыми работами с многослойным перцептроном и параллельными вычислениями.

Нейрокомпьютеры — это ПК, состоящих из множества работающих параллельно простых вычислительных элементов, которые называют нейронами. Нейроны образуют так называемые нейросети. Высокое быстродействие нейрокомпьютеров достигается именно за счет огромного количества нейронов. Нейрокомпьютеры построены по биологическим принципу: нервная система человека состоит из отдельных клеток — нейронов, количество которых в мозгу достигает 10 12 , при том, что время срабатывания нейрона — 3 мс. Каждый нейрон выполняет достаточно простые функции, но так как он связан в среднем с 1 — 10 тыс. других нейронов, такой коллектив успешно обеспечивает работу человеческого мозга.

Представитель VI-го поколения ЭВМ — Mark I

В оптоэлектронных компьютерах носителем информации является световой поток. Электрические сигналы преобразуются в оптические и обратно. Оптическое излучение в качестве носителя информации имеет ряд потенциальных преимуществ по сравнению с электрическими сигналами:

  • Световые потоки, в отличие от электрических, могут пересекаться друг с другом;
  • Световые потоки могут быть локализованы в поперечном направлении нанометровых размеров и передаваться по свободному пространству;
  • Взаимодействие световых потоков с нелинейными средами распределено по всей среде, что дает новые степени свободы в организации связи и создания параллельных архитектур.

В настоящее время ведутся разработки по созданию компьютеров полностью состящих из оптических устройств обработки информации. Сегодня это направление является наиболее интересным.

Оптический компьютер имеет невиданную производительность и совсем другую, чем электронный компьютер, архитектуру: за 1 такт продолжительностью менее 1 наносекунды (это соответствует тактовой частоте более 1000 МГц) в оптическом компьютере возможна обработка массива данных около 1 мегабайта и больше. К настоящему времени уже созданы и оптимизированы отдельные составляющие оптических компьютеров.

Оптический компьютер размером с ноутбук может дать пользователю возможность разместить в нем едва ли не всю информацию о мире, при этом компьютер сможет решать задачи любой сложности.

Биологические компьютеры — это обычные ПК, только основанные на ДНК-вычислений. Реально показательных работ в этой области так мало, что говорить о существенных результатах не приходится.

Молекулярные компьютеры — это ПК, принцип действия которых основан на использовании изменении свойств молекул в процессе фотосинтеза. В процессе фотосинтеза молекула принимает различные состояния, так что ученым остается только присвоить определенные логические значения каждом состояния, то есть «0» или «1». Используя определенные молекулы, ученые определили, что их фотоцикл состоит всего из двух состояний, «переключать» которые можно изменяя кислотно-щелочной баланс среды. Последнее очень легко сделать с помощью электрического сигнала. Современные технологии уже позволяют создавать целые цепочки молекул, организованные подобным образом. Таким образом, очень даже возможно, что и молекулярные компьютеры ждут нас «не за горами».

История развития компьютеров еще не закончена, помимо совершенствования старых, идет и разработка совершенно новых технологий. Пример тому квантовые компьютеры — устройства, работающие на основе квантовой механики. Полномасштабный квантовый компьютер — гипотетическое устройство , возможность построения которого связана с серьезным развитием квантовой теории в области многих частиц и сложных экспериментов; эта работа лежит на передовом крае современной физики. Экспериментальные квантовые компьютеры уже существуют; элементы квантовых компьютеров могут применяться для повышения эффективности вычислений на уже существующей приборной базе.

Источник

Adblock
detector