Меню

Как ведет себя алюминий при нагреве

Изменение физико-механических свойств алюминия под действием температуры

Повышение температуры вызывает увеличение электрического сопротивления; для высокочистого алюминия температурный коэффициент электрического сопротивления равен 0,00429 1/град. Изменение величины электрического сопротивления алюминия в функции температуры носит прямолинейный характер.

При понижении температуры ниже 20° С величина электрического сопротивления резко уменьшается. Для алюминиевой проволоки (из алюминия марки АЕ). удельное электрическое сопротивление при —60° С снижается на 20%, т.е. равно 0,25-0,0282 ом мм2/м.

С повышением температуры до 0,4Т (Т — абсолютная температура) у металлов начинается рекристаллизация (процесс образования и роста новых кристаллов).

Температура начала рекристаллизации зависит от степени деформации, чистоты металла и длительности нагрева; чем больше примесей в металле и короче время нагрева, там выше температура рекристаллизации.

При достижении температуры рекристаллизации деформированный металл вследствие образования новых кристаллов полностью теряет свою механическую прочность и восстанавливает пластичность. Для алюминия температура рекристаллизации находится около 120° С. Эта температура относится к сильнодеформированному чистому алюминию. Однако при длительных нагревах рекристаллизация алюминия может наступить и при более низких температурах.

На рис. 2-4 показано изменение механических свойств алюминиевой проволоки из алюминия марки А5 0 5 мм в функции температуры. Проволока испытывалась в холодно-деформированном состоянии.

Изменение механических характеристик алюминиевых шин сечением 40X4 из алюминия марки А 2 в зависимости от температуры (до 350° С) представлено на рис. 2-5. Снижение предела прочности у них отмечается, начиная с температуры 50С, при этом относительное удлинение почти не изменяется.

При сбалчивании алюминиевых шин между со бой в месте соединения при определенном давлении и температуре может наступать ослабление

контакта, последнее обстоятельство может вывести из строя электрическую аппаратуру. На рис. 2-6 представлены кривые сжатия шинного алюминия. Эти кривые показывают предел нагрева, выше которого шина из алюминия начинает подвергаться пластической деформации, что и вызывает нарушение контакта. Таким пределом надо считать температуру 200° С , так как при ней пластическая деформация алюминия начинается при давлениях около 200 кгс/см2, т. е. при удельных давлениях, соответствующих обычно принятым для алюминиевого контакта.

Рассматривая влияние повышенных температур на изменение свойств проводникового алюминия, следует принимать во внимание токовые нагревы, так как при эксплуатации наблюдается потеря прочности алюминиевых проводов, шин и других изделий, вызванная токовыми нагревами.

Проведение испытаний при высоких токовых нагрузках приводит к полному разупрочнению проводов из алюминия со значительной степенью холодной деформации, причем это разупрочнение наступает очень быстро. Проволока из алюминия (марки А5) 99%-ной холодной деформации полностью разупрочнилась в течение всего лишь 0,6 сек при температуре 440° С. Потеря прочности (начало рекристаллизации) у сильно деформированной алюминиевой проволоки при очень кратковременных (0,1, 0,3, 1,0 и 10 сек) действиях тока короткого замыкания лежит в интервале температур 160—180° С. При выдержке в течение 1000 ч при температуре 80° С у алюминиевой проволоки значительно снизились прочностные свойства: предел прочности понизился с 20 до 15 кгс/мм 2 .

С понижением температуры у всех металлов, в частности у алюминия, прочность на разрыв возрастает, удлинение снижается.

При охлаждении от +20 до —60° С у алюминиевой проволоки (03 мм) предел прочности возрос на 10,5%, при этом относительное удлинение снизилось на 13% первоначального значения. После продолжительной (50 суток) выдержки алюминиевой проволоки при температуре —60° С не наблюдалось изменения предела прочности, измеренного при комнатной температуре.

Источник

Инженеру про алюминиевые сплавы

Плотность алюминия

Наиболее привлекательным для инженеров физическим свойством алюминия является его плотность 2,7 г/см 3 , что составляет всего лишь треть от плотности сталей.


Рисунок 1 – Прочность на единицу плотности алюминия по сравнению с другими металлами и сплавами [2]

Коррозионная стойкость алюминия

Вторым по важности свойством является его хорошая коррозионная стойкость, хотя алюминий с точки зрения химии и не слишком благородный металл. Все это потому, что «свежий» алюминий (и алюминиевые сплавы) реагирует с кислородом и водяным паром в воздухе с образованием тонкой, плотной оксидной пленки, которая защищает нижележащий металл от дальнейшего взаимодействия с окружающей средой. Поэтому технический алюминий и большинство его сплавов без легирования медью показывают очень хорошее сопротивление коррозии в жидкостях с рН в кислотном интервале от 5 до 8, которому соответствуют и большинство атмосферных условий окружающей среды.


Рисунок 2 – Влияние легирующих элементов на коррозионную стойкость
(и усталостную прочность) алюминиевых сплавов [2]

Температурное расширение алюминия

Линейное температурное расширение алюминия и его сплавов составляет 24·10 -6 на 1 градус Цельсия – в два раза больше чем у сталей. Это необходимо учитывать во многих конструкциях, в которых необходимо обеспечивать свободное температурное расширение элементов. При ограничении температурного расширение (или сжатия) в алюминиевом элементе из-за более низкого модуля упругости возникают напряжения, величина которых составляет 2/3 от напряжений, которые возникли бы в аналогичном стальном элементе.

Модуль упругости алюминия

Модуль упругости алюминия – 70000 МПа, только треть от модуля упругости сталей. Это влечет за собой существенные последствия для геометрии конструкции, так как прогибы балок, несущая способность колонн, т.е. их боковое выпучивание или местное выпучивание прямо зависят от модуля упругости.


Рисунок 3 – Прочность и модуль Юнга некоторых металлов [2]


Рисунок 4 -Диаграммы растяжения для низкоуглеродистой конструкционной стали (St52)
и алюминиевого сплава 6082-Т6 [2]

Жесткость алюминиевых профилей

Во многих строительных конструкциях критическим параметром профилей является их жесткость. Если стальной профиль заменять на алюминиевый с сохранением его жесткости, то утолщать в три раза все стенки не совсем экономично, так как алюминий легче стали как раз в те же три раза. Однако облегчение конструкций за счет применения алюминия – это естественное стремление, как по физическим, так и по экономическим причинам.

При проектировании балок есть практичное и проверенное правило: увеличивайте все размеры кроме ширины в 1,4 раза и получите поперечное сечение с моментом инерции почти в три раза больше. Тогда для профиля с той же жесткостью (Е · I) сэкономите около 50 % веса. При этом в некоторой степени компенсируется потеря жесткости в отношении бокового выпучивания. С учетом того, что часто стандартные стальные профили являются весьма не оптимальными, можно сэкономить и больше чем 50 % веса. Это хорошо видно из рисунков 5 и 6. Если нет ограничений по высоте, и боковое выпучивание не является конструкционным параметром, то можно сэкономить до 60 % веса. Если жесткость элемента не важна, а прочность стали близка к прочности алюминиевого сплава, то экономия может быть и до 70 %, но это уже окончательный предел возможной экономии веса.

Читайте также:  Сколько алюминия в самолете ту 154


Рисунок 6 – Четыре балки, которые имеют одинаковый прогиб [2]

Это приводят ко второму важному моменту. Если момент инерции профиля увеличивается в три раза при увеличении высоты профиля только в 1,4 раза, то момент сопротивления сечения увеличится соответственно в 3:1,4=2,1 раза. Поэтому напряжения в алюминиевой балке по сравнению со стальной будут в два с лишним раза меньше. Теперь понятно, почему конструктору не надо сразу «хвататься» за высокопрочные алюминиевые сплавы, и почему менее легированные алюминиевые сплавы 6060 и 6063 (АД31) настолько популярны.

Нагрев алюминия

Как и у других металлов прочность алюминия с повышением температуры снижается. До некоторых температур это явление обратимо, то есть после охлаждения материал возвращается к тем же свойствам, что и до нагрева. До температуры около 80 °С падением прочности можно пренебречь для всех сплавов и состояний. Выше 80 °С некоторые конструкторские ситуации могут потребовать учета эффекта ползучести.


Рисунок 7 – Прочность на растяжение алюминиевого сплава 2014-Т6
при различных температурах испытания [2]

Термически упрочненные сплавы начинают терять прочность при температурах выше 110 °С, причем степень этого явления зависит от длительности нагрева.

Сплавы, не упрочняемые термической обработкой, в нагартованных состояниях начинают терять прочность при температурах выше 150 °С и также в зависимости от длительности нагрева. После нагрева термически не упрочняемых сплавов в отожженном состоянии «О» необратимой потери прочности не происходит.

Считается, что короткий нагрев термически упрочненных алюминиевых профилей до температуры 180-200 °C в течение 10-15 минут, который происходит при «оплавлении» порошковых красок, не приводит к серьезной потере прочности.

Сварка алюминиевых сплавов

Намного серьезней является потеря прочности алюминиевых сплавов при сварке. Здесь температура поднимается настолько высоко из-за локального плавления, что падение прочности вблизи сварного шва надо обязательно принимать во внимание. Термически не упрочняемые сплавы теряют всю свою прочность, полученную при нагартовке, и возвращаются к отожженному состоянию «О». Термически упрочняемые алюминиевые сплавы в состоянии Т6 теряют приблизительно 40 % их прочности (рисунок 8) за исключением сплава 7020, который теряет только 20 %. Все эти сплавы не доходят до состояния полного отжига, поскольку неизбежен определенный эффект закалки при охлаждении шва. Требования к прочностным характеристикам материала в зоне сварного шва устанавливают и контролируют по результатам испытаний образцов.

Рисунок 8 – Влияние нагрева при сварке на прочность
термически упрочненного алюминиевого сплава (6082-Т6) [2]

  1. R. Gitter Selection of structural alloys, Brussels 2008
  2. TALAT 2204 – Design Philosophy

Источник

Горючесть алюминиевых конструкций: миф и реальность

Алюминий и его сплавы являются наиболее распространенными среди цветных металлов материалами и находят все более широкое применение в транспорте, строительстве, упаковке, электротехнике и производстве предметов быта. Благодаря уникальному комплексу свойств они успешно выдерживают конкуренцию со стороны других конструкционных материалов, таких как сталь, бетон, дерево, пластмассы, стекло и др.

К сожалению, в России — одном из крупнейших мировых производителей первичного алюминия — использование алюминия для этих целей существенно отстает от уровня развитых стран. Из произведенного в прошлом году 3,76 млн. т алюминия только немногим более 600 тыс. т было использовано в виде изделий для внутреннего потребления в стране. Причин этому несколько. В первую очередь низкий спрос на алюминиевую продукцию в России обусловлен значительным спадом промышленного производства. Однако немаловажную роль сыграло имевшее в советское время подчинение потребления нуждам военно-промышленного комплекса и, как следствие, недостаточная до настоящего времени осведомленность производителей и потребителей гражданской промышленной продукции о свойствах алюминия, его сплавов и их преимуществах перед другими материалами. Отсюда и ошибочные представления у многих, например, о токсичности или излишне высокой стоимости алюминия, невысокой коррозионной стойкости или недостаточной механической прочности его сплавов и др. А эти стереотипы создают препятствие применению алюминия в изделиях, сооружениях и машинах.

С очередным мифом мы столкнулись, знакомясь с материалами «круглого стола» по проблеме «Вентилируемые фасады: «за» или «против» [1]. В ходе дискуссии там были высказаны опасения в части применения для этих целей алюминия: мол «…алюминиево-магниевые сплавы горят… и специалисты-материаловеды, работающие в авиации, это прекрасно знают…». Наш почти сорокалетний опыт работы в авиационной промышленности, связанный с плавлением, литьем и горячей обработкой давлением практически всех марок алюминиевых деформируемых сплавов позволяет судить об ошибочности этого утверждения. Известно, что горение — это высокотемпературное окисление, характеризующееся высокой скоростью процесса и выделением значительного количества тепла. Поэтому представления о горючести алюминия и его сплавов прежде всего связаны с большим сродством алюминия к кислороду. Из рис. 1 [2]следует, что алюминий отличается от меди и железа значительно более высокой теплотой окисления. Его окисел очень стабилен и плохо восстанавливается. Это свойство широко используется в металлургии, где алюминий применяют в качестве раскислителя.

Отметим, что разница в сродстве к кислороду предопределила хронологию применения этих металлов человечеством. В бронзовом веке сначала использовали самородную медь, а затем стали получать ее сплавы с оловом, раздувая горн легкими через трубки. Для получения железа потребовалось уже восстановление руды древесным углем в сыродутных печах. И только с появлением электричества стало возможным разорвать прочную связь кислорода и алюминия и начать производство этого легкого металла.

Содержание

Известно, что при нагреве мелко раздробленного алюминия он энергично сгорает на воздухе

При этом выделяется 31 кДж энергии на 1 г окислившегося алюминия, это чуть меньше тепла, образуемого при сгорании 1 л природного газа. Чем дисперснее частицы алюминия, тем меньшая необходима температура нагрева. Так, алюминиевый порошок, смешанный с выделяющими кислород веществами, начинает интенсивно гореть при температуре воспламенения 250–300 0С. Это широко используется в пиротехнике и производстве ракетного топлива. Распыленный же в воздухе алюминиевый порошок с размерами частиц менее 100 мкм способен образовывать взрывчатую смесь при комнатной температуре.

Читайте также:  Что означает срабатывание датчика наклона StarLine A93?

При проведении алюмотермической реакции алюминиевая дробь, смешанная с окисью железа (кузнечной окалиной), для воспламенения требует доведение локальной температуры до 1 100 0С. Затем реакция Fe2O3 + 2Al = 2Fe + Al2O3 продолжается самопроизвольно с образованием жидкого шлака из окиси алюминия и жидкого железа. При этом температура в зоне реакции достигает 2 400 0С. Следует отметить, что в 50-х гг. прошлого столетия в горнорудной промышленности ряда стран имели место случаи возгорания и взрывов при ударе алюминия ржавым железом или сталью в присутствии горючей окружающей среды. Природа явления также связана с алюмотермической реакцией, вызванной передачей кислорода между глубоко смешанными частицами алюминия и ржавчины. В нормальных атмосферных условиях таких случаев не наблюдалось. Поэтому в присутствии горючей окружающей среды алюминиевые детали, находящиеся в прямом контакте с ржавым железом или сталью, обязательно окрашивают и поддерживают покрытие в хорошем состоянии.

Еще один пример возгорания дисперсного алюминия

горение капель алюминиевого расплава в шлаке, снятом с зеркала ванны печи. Исследования [3] показывают, что в этом случае сгорают капли размером 1 мм и менее. Их доля достигает в шлаке 20–25%. Для сокращения потерь металла используют или быстрое охлаждение шлака до температуры 450 0С в среде инертного газа или прессование горячего шлака с применением установок ALTEK PRESS (а также их аналогов) для выжимания 10–20% алюминия и коагулирования капель в более крупные образования.

Горению алюминия в дисперсной форме способствуют следующие факторы. Поверхность дисперсных частиц обладает повышенной реакционной способностью, обусловленной увеличенной долей несовершенств из-за дефектов решетки и примесей. Большое значение имеет также огромное выделение энергии вследствие большой удельной поверхности контакта металла с кислородом и невозможность ее отвода вглубь металла из-за малости размера частиц. В результате подъема температуры ослабляются защитные свойства окисной пленки.

В компактной же форме алюминий и алюминиево-магниевые сплавы ни в твердом, ни в расплавленном состояниях в атмосферных условиях не горят, не поддерживают горения и не способствуют распространению пламени. Это свойство алюминиевых сплавов позволяет успешно плавить их в пламенных отражательных печах, подвергая непосредственному окислительному воздействию пламени горелок. Алюминиевая поверхность под действием огня нагревается и при достижении температуры плавления начинает оплавляться, но не горит. Такое поведение металла при взаимодействии с кислородом обусловлено достаточно высокими защитными свойствами образующейся на поверхности окисной пленки и возможностью отвода тепла из зоны реакции вглубь металла вследствие высокой теплопроводности алюминия.

Известно, что свежевскрытая поверхность алюминия даже при комнатной температуре довольно быстро покрывается окисной пленкой, толщина которой в первые часы окисления достигает 1,7–2,1 нм. При дальнейшей выдержке на воздухе толщина оксидного слоя медленно в течение 70–80 дней увеличивается до 3 нм и затем рост пленки практически прекращается. С повышением температуры толщина окисной пленки на поверхности алюминия растет и при температурах, близких к точке плавления, достигает 100 нм. На чистом алюминии до температур 700–1 000 0Сона состоит из г-Al2O3, параметр кубической решетки которой (0,791 нм) почти точно соответствует удвоенному параметру г.ц.к. решетки алюминия (0,808 нм). Поэтому г-окись алюминия как бы является простым продолжением решетки алюминия. Это обес-печивает ее хорошую адгезию на металле, сплошность и отсутствие пор и трещин. Единственный способ проникновения кислорода к алюминию — диффузия ионов через окисную пленку — процесс достаточно медленный даже при высокой температуре нагрева. Вот почему несмотря на высокое сродство алюминия с кислородом и экзотермический характер реакции окисления процесс горения алюминия в результате этой реакции развития не получает.

В сплавах алюминия с магнием

ведущую роль в окислении играет магний, поскольку является поверхностно активным элементом и обладает большим, чем алюминий, сродством к кислороду. Поэтому в алюминиево-магниевых сплавах, содержащих до 1,0% магния, окисная пленка состоит в основном из шпинели MgAl2O4 и при более высоких содержаниях магния — только из MgO.

Защитные свойства поверхностных окисных пленок оценивают в соответствии с известным правилом Пиллинга и Бедворта [5] с помощью коэффициента изменения объема в, который представляет собой отношение объема эквивалента полученного окисла Мок/сок (Мок — масса в грамм-эквивалентах, сок — плотность) к соответствующему объему металла М/с. Если коэффициент в 1, что наблюдается для алюминия и железа, то на поверхности металла образуется плотная защитная пленка окисла. Пленка на алюминиево-магниевом сплаве из MgO хуже защищает от окисления и потерь магния, чем г-Al2O3 или б-Al2O3 на алюминии, но и она не допускает возгорания металла при нагреве в кислородосодержащей атмосфере.

Приведенные в табл. 1 [5] данные свидетельствуют о том, что сплавы на основе железа и алюминиевые сплавы в отношении горения должны быть равнозначными. Это согласуется с результатами испытаний на горючесть алюминия марки 8112 и алюминиевых сплавов систем Al-Mn (3003, 3004, 3105), Al-Mg (5005), Al-Mg-Si (6061, 6063) в вертикальной трубчатой печи, проведенных фирмой Signet Laboratories в США по заказу компании Kaiser Aluminium в период с 1968 по 1972 гг. Как отмечается в материалах [6] Американской алюминиевой ассоциации, все указанные сплавы в ходе этих испытаний вели себя одинаково и были полностью негорючими, как стальные материалы.

Алюминий и его сплавы от стальных материалов отличает более низкая температура плавления, данные по которой для сплавов, используемых в производстве строительных конструкций, приведены в таблице 2 [7]. В результате алюминиевые сплавы уступают сталям в части огнестойкости.

Большинство алюминиевых сплавов начинают заметно снижать прочность при температурах 200–250 0С и поэтому имеют более низкий максимум рабочей температуры по сравнению со сталью. В качестве примера на рисунке 2 [8] приведены данные по изменению механических свойств прутков и листов из сплава АД31, широко используемого в отечественных алюминиевых строительных конструкциях.

Эта особенность алюминиевых сплавов должна учитываться при проектировании строительных конструкций. Необходимо предусматривать защиту структурной целостности конструкций от воздействия огня в течение требуемых периодов времени с помощью техники огнестойкой отделки или вспенивающихся защитных покрытий, использовать комбинированные профили со специальными термоизолирующими элементами, позволяющими увеличить время прогрева каркаса и уменьшить температурные деформации при нагреве, применять водяные завесы, создаваемые спринклерными системами пожаротушения, а также другие известные строителям приемы.

Читайте также:  Клей для латуни с алюминием

В 1962 г. американская компания Alcoa опробовала защиту от пожара алюминиевых конструкций зданий покрытиями из легкого бетона на основе вермикулита. Было доказано, что толщина покрытия, необходимая для предотвращения увеличения температуры алюминиевых колонн сверх 190 0С и 260 0С в течение периода до 4 часов, лишь на немного больше, чем для стали. Для стальных колонн, в соответствии с требованиями Американского общества по испытанию материалов, такие покрытия требуются для предохранения от нагрева выше 540 0С. Использование легкого бетона было признано эффективным способом защиты алюминиевых строений.

Проблема огнестойкости алюминиевых конструкций особенно актуальна и для России. Это связано с большим их распространением в последнее время в виде фасадов, витражей, окон и дверей, внутренних перегородок и ограждающих конструкций, а также участившимися случаями пожаров в общественных и жилых зданиях. Традиционные светопрозрачные конструкции из алюминиевых сплавов с применением обычного листового силикатного стекла имеют, как правило, низкую огнестойкость — до 8–10 мин. по признаку потери целостности. В то время как в соответствии с требованиями СНиП 21-01-97 конструкции, ограждающие пути эвакуации (в том числе и светопрозрачные), должны иметь предел по огнестойкости не менее 45 мин. (ЕI-45, IV класс огнестойкости). При этом потеря целостности (Е) характеризуется образованием в конструкции сквозных трещин или отверстий, через которые проникают продукты горения или пламя, либо выпадением фрагмента конструкции. Потеря же теплоизолирующей способности I характеризуется высокой интенсивностью теплового излучения, проходящего через светопрозрачное заполнение конструкции. В этом случае плотность теплового потока принимает 3,5 кВт/кв. м на расстоянии 500 мм от необогреваемой поверхности.

Приведем несколько примеров. Немецкая компания Schьco предлагает ряд системных решений для защиты зданий от огня за счет применения огнестойких алюминиевых дверей, фасадов и стекла, а также компонентов огнестойкой конструкции (фурнитуры, уплотнителей, крепежа и пр.), которые прошли тестирование в Технологическом центре в Билефельде — одном из крупнейших в мире испытательных центров. Ею разработаны системы Firestop для дверей и перегородок с огнестойкостью 30, 60 и 90 минут [9].

Большие успехи в создании огнестойких алюминиевых конструкций достигнуты российской компанией «Завод Алюминиевые конструкции». Применяя профили с термоизолирующими элементами «АГРИСОВГАЗ» и «ТАТПРОФ», а также многослойные композиционные стекла со вспенивающимся при температурах 150–300 0Си образующим теплозащитный коксовый слой клеевым составом, она освоила серийный выпуск фасадов и перегородок с огнестойкостью EI-60 и EI-90. На сертификационных испытаниях огнестойкая конструкция из системы AGS-150 противостояла открытому пламени 120 минут, показав реальное соответствие уровню EI-120 (I класс огнестойкости).

Следует отметить, что ряд свойств алюминиевых сплавов облегчают решение задачи повышения огнестойкости конструкций

В таблице 3 приведены некоторые свойства алюминия и железа, которые, соответственно, являются основой алюминиевых сплавов и сталей, во многом определяющей уровень их свойств.

Среди этих свойств следует в первую очередь отметить более высокую теплоемкость алюминия, требующую большего (в 1,6 раза) по сравнению с железом количества тепла, необходимого для одинакового увеличения температуры при равной массе конструкции.

Большая теплопроводность алюминия при значительно меньшей плотности обес-печивает в условиях нестационарного процесса нагрева более высокую (почти в 6 раз) температуропроводность или скорость выравнивания температуры в массе конструкции, что исключает локальный перегрев, способствует рассеиванию тепла и помогает сократить количество мест, где могла бы произойти существенная потеря свойств материала.

И, наконец, отличная способность алюминия

к отражению лучистой энергии обес-печивает лучшую защиту конструкции от перегрева при пожаре. При этом, чем больше длина волны света, тем интенсивнее (особенно в инфракрасной части спектра) она отражается алюминием. В реальных условиях поверхностная окисная пленка на алюминиевых сплавах уменьшает на 10–15% отражательную способность. Однако и в этом случае она значительно превышает 5% коэффициент отражения для окрашенной стали и 25% для нержавеющей стали. Это придает алюминиевым конструкциям дополнительные преимущества.

Таким образом, алюминий и его сплавы в компактной форме в атмосферных условиях не горят и не поддерживают горения. При проектировании конструкций необходимо учитывать весь комплекс свойств этих сплавов, как способствующих повышению огнестойкости, так и ее снижающих, а также применять способы защиты структурной целостности конструкции от воздействия огня. В мире накоплен огромный опыт успешного применения алюминия и его сплавов (в том числе и алюминиево-магниевых композиций) в конструкциях, требующих высокого сопротивления возгоранию и распространению пламени, включая суда, нефтяные платформы, грузовики с жидкими огнеопасными веществами, общественные здания (типа павильонов, торговых центров, арен) и др. сооружения. Поэтому есть все основания для широкого использования алюминиевых сплавов и в российской строительной практике.

Литература

1. «Вентилируемые фасады: «за» и «против»».//«Технологии строительства», № 1 (42), 2006, с. 6–18.

2. Уикс К. Е., Блок Ф. Е. «Термодинамические свойства 65 элементов, их окислов, галогенидов, карбидов и нитридов». — М.: «Металлургия», 1965.

3. Zeng D., Pankov E. The best recycling technology and equipment for today’s Russian market with case study at VMC, Russia.//Труды 3-й международной конференции «Рециклинг алюминия». Москва, 29–31 марта 2006 г.

4. Добаткин В. И., Габидуллин Р. М., Кола-чев Б. А., Макаров Г. С. «Газы и окислы в алюминиевых деформируемых сплавах». — М.: «Металлургия», 1976.

5. «Окисление металлов» (под ред. Ж. Бенара). Т. 1. — М.: «Металлургия», 1968.

6. Fire Resistance and Flame Spread Performance of Aluminum and Aluminum Alloys. Second Edition. The Aluminum Association, Inc. July 2002. P. 21.

7. «Алюминиевые сплавы (свойства, обработка, применение)». — М.: «Металлургия», 1979.

8. Микляев П. Г. «Механические свойства легких сплавов при температурах и скоростях обработки давлением». Справочник. — М.: «Металлургия», 1994.

9. «Алюминиевые огнестойкие системы Schьco».//«Окна, двери, фасады». Выпуск 17. 2006, с. 134–137.

Источник

Adblock
detector