Меню

Как варить сталь 06хн28мдт

Сталь 06ХН28МДТ

Сталь 06ХН28МДТ

Класс: жаростойкая, нержавеющая, жаропрочная, коррозийно-стойкая, обыкновенная сталь.

Некоторые аналоги: Z1NCDU31-27-03, SCS23, 1.4563, AISI 904L.

Основные свойства стали 06ХН28МДТ

  • Удельный вес – 7.96 г/см 3; ;
  • Твердость – 200 HB MПа -1 ;
  • Удельное сопротивление стали (20°С) – 0.75 Om мм 2 ;
  • Магнитная проницаемость – 1, 255 МТл.

Предлагаемая сталь не имеет дефектов (усадочных раковин, волосовин, поверхностных рисок), а также полностью соответствует отечественным нормам и геометрии ГОСТ. Перед отгрузкой каждая партия стали проходит детальную проверку.

Предназначение и использование стали 06ХН28МДТ

Пластичность, устойчивость ко всем видам нагрузок, жаропрочность и другие свойства металла сделали его востребованным во многих отраслях промышленности. В частности, из сплава 06ХН28МДТ изготавливают:

  • детали заводских установок;
  • соединения труб;
  • сварные конструкции;
  • сварочные электроды;
  • стыки трубопроводов;
  • корпуса бытовой техники.

Кроме того, сплав 06ХН28МДТ используется при производстве химического оборудования и минеральных удобрений, а также как плакирующий слой (при изготовлении двухслойных устойчивых к коррозии листов, используемых в разных отраслях промышленности).

Коррозионная стойкость сплава 06ХН28МДТ

Никель, хром и молибден сделали сталь устойчивой к коррозийным процессам. Так, сплав выдерживает длительное взаимодействие с концентрированной серной кислотой. Благодаря высокому содержанию никеля сплав отличается устойчивостью к коррозийному растрескиванию, а медь, в свою очередь, помогает металлу выдерживать воздействие кислотных сред. Кроме того, во время испытаний сталь показала себя устойчивой к межкристаллитной коррозии.

Свариваемость сплава 06ХН28МДТ

Относится к хорошо свариваемым сплавам. Сталь сваривается без предварительного прогрева металла, а также не нуждается в последующей термической обработке. Сплав можно сваривать как ручной, так и автоматической сваркой (с применением флюса и в защитном газе). В первом случае лучше применять электроды ОЗЛ-17У и ОЗЛ-37-2 (с проволочным стержнем). При автоматической дуговой сварке можно использовать те же электроды. Рекомендуемый флюс АН-18.

Обработка сплава 06ХН28МДТ

Холодная. Допустимые действия: глубокая вытяжка, растяжение, изгиб. Во время обработки можно использовать те же инструменты, с помощью которых формуются углеродистые стали, но из-за особенности сплава придется приложить больше усилий (до 100%).

Тепловая. Перед тепловой обработкой сталь нуждается в длительном прогреве. На него придется затратить в 12 раз больше времени, чем на прогрев углеродистых сплавов. Рекомендуемая температура: начало процесса 1150 – 1200°С; конец процесса 800 — 900°С. Важно обеспечить равномерное распределение углеродов, чего можно добиться путем плавного понижения температуры, а максимальную податливость металла обеспечит резкое охлаждение.

Источник

Электроды для сварки коррозионно-стойких сталей и сплавов.

Электроды этой группы обеспечивают получение сварных соединений, обладающих требуемой стойкостью против коррозии в атмосферной, кислотной, щелочной и других агрессивных средах.

Некоторые электроды данной группы имеют более широкую область применения и их можно использовать не только для получения соединений с требуемыми коррозионной стойкостью, но и как электроды, обеспечивающие высокую жаростойкость и жаропрочность металла шва.

Согласно действующей классификации к высоколегированным сталям относят сплавы, содержание железа в которых более 45%, а суммарное содержание легирующих элементов не менее 10%, считая по верхнему пределу при концентрации одного из элементов не менее 8% по нижнему пределу. К сплавам на никелевой основе относят сплавы с содержанием не менее 55% никеля. Промежуточное положение занимают сплавы на железоникелевой основе.

В соответствии с ГОСТ 10052-75 электроды для сварки высоколегированных коррозионно-стойких, жаростойких и жаропрочных сталей и сплавов по химическому составу наплавленного металла и механическим свойствам металла шва и наплавленного металла классифицированы на 49 типов (например, электроды типа Э-07Х20Н9, Э-10Х20Н70Г2М2Б2В, Э-28Х24Н16Г6). Наплавленный металл значительной части электродов, регламентируется техническими условиями предприятий — изготовителей.

Химический состав и структура наплавленного металла электродов для сварки высоколегированных сталей и сплавов отличаются (иногда существенно) от состава и структуры свариваемых материалов. Выбирая электроды, внимание обращают на обеспечение: основных эксплуатационных характеристик сварных соединений (механических свойств, коррозионной стойкости, жаростойкости, жаропрочности), стойкости металла шва против образования трещин, требуемого комплекса сварочно-технологических свойств.

Электроды для сварки высоколегированных сталей и сплавов имеют покрытия основного, рутилового и рутилово-основного видов.

Из-за низкой теплопроводности и высокого электросопротивления скорость плавления, а следовательно и коэффициент наплавки электродов со стержнями из высоколегированных сталей и сплавов существенно выше, чем у электродов для сварки углеродистых, низколегированных и легированных сталей. Вместе с тем повышенное электросопротивление металла электродного стержня обуславливает необходимость применения при сварке пониженных значений тока и уменьшения длины самих стержней (электродов). В противном случае из-за чрезмерного нагрева стержня возможен перегрев покрытия и изменение характера его плавления, вплоть до отваливания отдельных кусков.

Сварка, как правило, производится постоянным током обратной полярности.

Источник

Технология сварки разнородных сталей

Разнородными принято считать стали, которые отличаются атомно-кристаллическим строением, т.е. имеют ГЦК-, ОЦК- решетку или принадлежат к разным структурным классам (перлитные, ферритные, аустенитные), а также стали с однотипной решеткой, относящиеся к различным группам по типу и степени легирования (низколегированные, легированные, высоколегированные). Они содержат в сумме до 5, 10 или свыше 10 % хрома и других легирующих элементов соответственно.

В табл. 1 приведены основные группы сталей, применяемых в машиностроении. Из них формируют различные сочетания для изготовления сварных конструкций.

Читайте также:  Дефекты парапетов из оцинкованной стали

Табл. 1 Классификация сталей, применяемых в сварных соединениях разнородных сталей

Класс сталей и сварочных материалов

Теплоустойчивые (Cr-Мо и Cr-Mo-V)

Мартенситные, ферритные, ферритно-мартенситные, аустенитно-мартенситные, ферритно-аустенитные

12 %-ные хромистые, жаростойкие

12 %-ные хромистые, жаропрочные

Аустенитные стали и сплавы на никелевой основе

Аустенитные коррозионно-стойкие и криогенные

Жаропрочные никелевые сплавы

Конструкции, сваренные из разнородных сталей, называют комбинированными. Они применяются в тех случаях, когда условия работы отдельных частей конструкции отличаются температурой, агрессивностью среды, особыми механическими воздействиями (износ, знакопеременное нагрузка и т.п.).

Особенности технологии сварки комбинированных конструкций из сталей различных структурных классов

Одна из причин пониженной свариваемости перлитной и аустенитной сталей — образование хрупкого мартенситного слоя или карбидной гряды в объеме переходной кристаллизационной прослойки, у которой уровень легирования металла снижается, приближаясь к перлитной стали. Образование этой прослойки объясняется ухудшением перемешивания жидкого металла в пристеночных слоях. При небольшом запасе аустенитности металла шва толщина этой прослойки может достигнуть критической величины, при которой происходит хрупкое разрушение сварного соединения.

Поэтому при выборе способов и режимов сварки отдают предпочтение технологии, при которой толщина кристаллизационной прослойки минимальна. Этого достигают следующими методами:

— Применением высококонцентрированных источников тепла (электронный луч, лазер, плазма);

— Разделкой кромок или их наплавкой (рис. 1), уменьшающей долю участия сталей;

— Выбором режимов сварки с минимальной глубиной проплавления;

— Переходом к дуговой сварке в защитных газах, обеспечивающей интенсивное перемешивание металла ванны.

Преимущества сварки комбинированных конструкций в защитных газах связаны с увеличением температуры расплавленного металла, снижением поверхностного натяжения и, соответственно, увеличением интенсивности его перемешивания, что вызвано ростом приэлектродного падения напряжения сварочной дуги и увеличением кинетической энергии переноса капель электродного металла и плазменного потока в дуге.

Добавление в аргон кислорода, азота, углекислого газа усиливает отмеченные преимущества. Добавки кислорода повышают температуру ванны также тем, что вызывают экзотермические окислительно-восстановительные реакции. В результате отмеченных явлений снижается уровень структурной и механической неоднородности в зоне сплавления перлитной стали с аустенитным швом.

При ручной дуговой сварке положительные результаты получают в противоположном варианте, т.е. при снижении температуры сварочной ванны, что зависит от температуры плавления электрода. Снижения температуры плавления электрода достигают увеличением содержания никеля и марганца. Применение таких электродов является наиболее радикальным мероприятием и при сварке под флюсом, одновременно уменьшающем ширину кристаллизационных и диффузионных прослоек (рис. 2).

При сварке под флюсом перемешивание ванны также может быть усилено увеличением силы тока, напряжения или скорости сварки. Однако рост этих параметров приводит к неблагоприятному изменению схемы кристаллизации (увеличению угла срастания кристаллитов), что увеличивает риск образования горячих трещин. Скорость сварки, как правило, не должна превышать 25 м/ч. Интенсивному электромагнитному перемешиванию ванны препятствует наличие шунтирования магнитного поля перлитной сталью, а также нарушение шлаковой защиты. В этом процессе весьма эффективен ввод внутренних стоков тепла в виде охлаждающей присадки (рис. 3), также снижающей температуру ванны.

Табл. 2 Выбор композиции наплавленного металла и термообработки для сварки перлитных и бейнитных сталей с аустенитными сталями и сплавами

Группа свариваемых сталей (см. табл. 1)

Композиция наплавленного металла

Предельная температура эксплуатации, °С

Источник

Сварка в химическом машиностроении (стр. 8 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

7.1. Специальные требования.

7.1.1. Сварные соединения сплавов 06ХН28МДТ, 03ХН28МДТ и ХН30МДБ должны отвечать требованиям по стойкости против межкристаллитной коррозии и испытаны по методу В и ВУ ГОСТ 6032.

7.1.2. Сплавы марок 06ХН28МДТ, 03ХН28МДТ и ХН30МДБ обладают склонностью к образованию горячих трещин в металле сварного шва, поэтому при отработке технологического процесса сварки сплавов металл сварного шва должен быть испытан на стойкость против горячих трещин в соответствии с ГОСТ 26389.

7.1.3. В соответствии с п. 3.11.3. ОСТв металле сварных швов сплавов 06Н28МДТ и 03ХН28МДТ допускаются микронадрывы протяженностью не более 2 мм (по согласованию со специализированной научно-исследовательской организацией).

7.1.4. Основными мерами и технологическими приемами предотвращения горячих трещин сплавов являются:

– усовершенствование конструкций сварных соединений, в т. ч. поиск возможности замены угловых и тавровых соединений на стыковые с разделкой;

– возможное уменьшение толщины свариваемых деталей, общей толщины шва и количества проходов:

– выполнение сварки специально подготовленными сварщиками;

– сварку следует выполнять многослойно, узкими валиками ограниченного компактного сечения без поперечных колебаний электрода с возможно большей скоростью;

– при возможности применять композитные швы с переменным хим. составом по сечению шва;

для предотвращения дефектов сварочную проволоку непосредственно перед сваркой необходимо зачистить шкуркой до металлического блеска и промыть ацетоном или другими растворителями;

– при многослойной сварке каждый проход выполняют после охлаждения предыдущего до температуры ниже 100°С;

– поверхность каждого наплавленного валика перед наложением последующего слоя зачищать механическим способом (рекомендуется абразивным кругом или щетками из нержавеющей стали) и обезжирить;

– швы, обращенные к агрессивной среде, для повышения их коррозионной стойкости во всех возможных случаях, рекомендуется выполнять в последнюю очередь или за один проход;

Читайте также:  Какая сталь лучше р6м5 или р18

– тщательная заварка кратеров швов и прихватка швов до образования выпуклой
поверхности. Выводить кратеры на основной металл запрещается;

– угловые и тавровые швы предпочтительно выполнять с разделкой и полным проплавлением без конструктивного зазора, что исключает возможность образования сквозных горячих трещин:

– для исключения трещин в кратерах необходимо обеспечить их полное заполнение с образованием выпуклой поверхности.

7.1.5. Для предотвращения горячих трещин следует:

– ручную дуговую и аргонодуговую сварку как плавящимся, так и неплавящимся электродом рекомендуется выполнять при минимальной длине дуги, без поперечных колебаний;

– автоматическую сварку под флюсом производят на пониженной скорости с минимальным числом проходов;

– в случае вынужденного обрыва дуги до ее повторного возбуждения необходимо убедиться в отсутствии горячей кратерной трещины; при наличии такой трещины кратер удалить механическим способом;

7.2. Ручная дуговая и автоматическая сварка.

7.2.1. Конструктивные элементы подготавливаемых кромок и размеры сварных швов должны соответствовать ГОСТ 5264 и ГОСТ 11534. для труб — ГОСТ 16037 или другой действующей нормативной документации и чертежам. Применение других типов сварных швов, удовлетворяющих требованиям ОСТдопускается по согласованию со специализированной научно-исследовательской организацией в соответствии с приложением 2 ПБ 10-115.

7.2.2. Сварку и прихватку выполнять электродами, указанными в табл. 34.

7.2.3. Режим сварки должен соответствовать указаниям паспортов, технических условий или этикеток на электроды. При отсутствии таких данных рекомендуется установить режим пробной сваркой по характеристикам плавления электрода и формирования по ГОСТ 9466 принимая силу сварочного тока в пределах, указанных в табл. 35.

Таблица 34. Сварочные материалы для сварки коррозионно-стойких сплавов на железоникелевой основе

Марка свариваемых сплавов

Тип электродов по ГОСТ 10052 (марка электрода)

Марка сварочной проволоки, технические условия

Допускаемая температура эксплуатации, °С

ТУ 04Х23Н26МЗДЗГ2Б (ОЗЛ-37-2)

Св-30Х15Н35ВЗБЗТ ГОСТ 2246

Сварочный ток. А, при положении шва

7.2.4. Диаметр сварочного электрода применяют согласно указаниям табл. 36.

Таблица 36. Диаметры электродов

Порядковый номер слоя шва(прохода)

Односторонняя с криволинейным скосом кромок

При толщине металла менее 3 мм, а также для обеспечения полного проплавления в первом слое односторонних швов большой толщины ручную дуговую сварку рекомендуется заменять аргонодуговой сваркой

7.2.5. Сварку сплавов выполняют на постоянном токе обратной полярности (плюс на электроде).

7.2.6. Автоматическую сварку выполняют по конструктивным элементам подготовленных кромок и размерам сварных швов в соответствии с ГОСТ 8713.
ГОСТ 11533 или другой действующей нормативной документацией и чертежами.

7.2.7. Марки сварочной проволоки для автоматической сварки сплавов марок 03ХН28МДТ и 06ХН28МДТ принимают согласно табл. 37.

Таблица 37. Сварочные материалы для автоматической сварки коррозионно-стойких сплавов на железоникелевой основе

Марка проволоки по ГОСТ 2246

Допускаемая температура эксплуатации и условия применения

Без требований стойкости против межкристаллитной коррозии

При наличии требований стойкости против межкристаллитной коррозии

7.2.8. Автоматическую сварку сплавов 06ХН28МДТ и 03ХН28МДТ под слоем флюса с гранулированной присадкой следует выполнять в соответствии с указанием и рекомендациями, изложенными в разделе 5.5. настоящего отраслевого стандарта.

7.2.9. Для прихватки деталей при сборке применять электроды, указанные в табл. 33. Допускается выполнение прихватки ручной аргонодуговой сваркой с применением сварочной проволоки, приведенной в табл. 34. Перед началом сварки необходимо удалить конец окисленной сварочной проволоки.

7.2.10. Режимы автоматической сварки под слоем флюса приведены в табл. 38.

Таблица 38. Режимы автоматической сварки под флюсом высоколегированных коррозионно-стойких сталей на железоникелевой основе

Толщина свариваемого металла, мм

Диаметр сварочной проволоки,

Скорость подачи сварочной проволоки, м/ч

Величина вылета проволоки, мм

7.3.1. Ручную аргонодуговую сварку следует выполнять неплавящимся вольфрамовым электродом на постоянном токе прямой полярности.

7.3.2. В качестве неплавящегося электрода применять вольфрамовые прутки лантанированные по ТУ , ГОСТ 23949 диаметром 2, 3,4 мм.

7.3.3. Вольфрамовые электроды должны быть заточены на острый конус на длине
10-15 мм (при диаметре 3-4 мм). Перед каждым проходом следует осматривать заточку и при обнаружении разрушения или загрязнения конца вольфрамового электрода заменять его или производить восстановление заточки.

При сварке угол наклона вольфрамового электрода по отношению к изделию должен составлять 60-70°. а угол присадочной проволоки — 90°.

7.3.4. В качестве защитных газов применять аргон высшего или первого сорта по ГОСТ 10157.

7.3.5. Сварочную проволоку использовать для сварки согласно табл. 34.

7.3.6. Кромки под сварку после резки на ножницах и рубки заготовок в штампах механически обработать на глубину не менее для толщины листа: S — 1-3 мм — 1S; 3-8 мм – 0,8S; 6-10 мм – 0,6S; 10-20 мм — 0,5S, а после плазменной резки на глубину не менее 2 мм от максимальной впадины.

7.3.7. При выполнении первого (корневого) прохода необходимо обеспечить полное проплавление кромок с образованием обратного валика. Рекомендуется первый (корневой) шов выполнять без присадочного металла или с присадочной проволокой, указанной в табл. 34 с одним или двумя слоями проволокой диаметром 2 мм.

7.3.8. Для ограничения насыщения газами и формирования корня шва необходимо обеспечить отвод тепла и защиту обратной стороны шва медными подкладками и поддувом аргона.

В случае недостаточной защиты корня шва, обязательно его удаление (зачистка) с наложением подварочного шва.

Читайте также:  Сталь 20хн3а ржавеет или нет

7.3.9. Режимы аргонодуговой сварки приведены в табл. 39.

Таблица 39. Режимы аргонодуговой сварки коррозионностойких сплавов на железоникелевой основе

Форма подготовки кромок и характер выполнения шва

на защиту обратной стороны шва

Без скоса кромок, односторонний и двусторонний

Со скосом двух кромок, односторонний и двусторонний

С двумя симметричными скосами двух кромок, двусторонний

Режимы приведены для стыковых соединений со стандартной подготовкой кромок для ручной аргонодуговой сварки неплавящимся электродом

8. СВАРКА ДВУХСЛОЙНЫХ СТАЛЕЙ

8.1.1 Рекомендуемые для химического машиностроения сочетания марок основного и плакирующего слоев двухслойной стали, поставляемой по ГОСТ 10885, приведены в
табл. 40.

8.2. Для изготовления аппаратов, работающих в агрессивных средах, с целью облегчения условий сварки и повышения коррозионной стойкости сварных соединений двухслойные листы толщиной от 11 до 21 мм должны применяться с повышенной толщиной плакирующего слоя (до 3,0 — 4,0 мм) в соответствии с условиями ГОСТ 10885. Данное требование в случае необходимости должно быть оговорено в документации на изделие и в заказе на двухслойную сталь.

8.3. При выборе класса сплошности сцепления слоев двухслойного листа по
ГОСТ 10885 рекомендуется пользоваться табл. 41.

8.4. Типы и конструктивные элементы разделки кромок и швов сварных соединений двухслойной стали должны удовлетворять требованиям ГОСТ 16098 и РТМ 26-168. Применение других типов сварных швов, удовлетворяющих требованиям ОСТ, допускается по согласованию со специализированной научно-исследовательской организацией в соответствии с приложением 2 ПБ 10-115.

Таблица 40. Сочетания марок стали основного и плакирующего слоев двухслойных листов

Марки стали плакирующего слоя

Марки стали основного слоя металла

Знак « + » — двухслойные листы поставляются без согласования потребителя с изготовителем. Знак « — » — двухслойные листы поставляются по согласованию потребителя с изготовителем.

8.5. Методы резки, подготовки кромок под сварку и их зачистки перед сваркой должны отвечать тем же требованиям, которые предъявляются к подобным методам, применяемым при обработке коррозионностойких сталей, аналогичных маркам плакирующего слоя.

Технологический процесс термической и механической резки и обработки кромок двухслойной стали должен предусматривать меры, предотвращающие отрыв (отделение) плакирующего слоя от основного.

8.6. Подготовленные под сварку кромки должны быть осмотрены или проконтролированы ультразвуком на отсутствие расслоений. Детали с обнаруженным расслоением могут быть забракованы, допущены к сварке после исправления или оставлены без исправления по решению технической службы предприятия-изготовителя в зависимости от размеров расслоения, рабочих условий изделия и требований нормативной документации.

Технология исправления расслоения должна быть согласована с технологическим институтом отрасли (ВНИИПТХИМНЕФТЕАППАРАТУРЫ) или другой специализированной научно-исследовательской организацией, указанной в приложении 2 ПБ 10-115.

Схема разделки двухслойной стали под сварку в зависимости от его толщины представлены на рисунке 9.

8.7. Сборка деталей под сварку должна производиться с соблюдением требований
ОСТПрихватка производится с применением электродов и режимов, установленных для сварки основных швов. Прихватку рекомендуется выполнять со стороны основного слоя (низкоуглеродистой или низколегированной стали).

8.8. Если прихватки не являются несущими в период транспортирования и
изготовления изделия, они могут быть выполнены в один проход длиной 30-50 мм с
расстоянием между ними — 25-30 толщин свариваемых элементов. Размеры прихваток,
воспринимающих внешние нагрузки, должны быть определены расчетом. Приварка
усиливающих технологических планок допускается со стороны основного слоя.

8.9. Сварка двухслойной стали может выполняться способами, технологические
схемы которых по группам приведены в табл. 42.

Группа I — двухсторонняя сварка перлитными и аустенитными сварочными материалами — рекомендуется в качестве наиболее распространенной группы исполнения при толщине металла 8 мм и более.

Таблица 41. Рекомендации по применению (заказу) двухслойных сталей

различных классов сплошности сцепления слоев по ГОСТ 10885

Класс сплошности сцепления слоев по ГОСТ 10885

Применение в хим. оборудовании по

1. Детали, подвергающиеся значительным нагрузкам, направленным на отрыв плакирующего слоя (например, трубные решетки, днища и др. детали, к плакирующему слою которых привариваются нагруженные устройства).

2. Сосуды и аппараты, работающие в циклическом температурном режиме при колебании температур во время эксплуатации более 50°С.

3. Аппараты, работающие при вакууме с остаточным давлением ниже 50 мм рт. ст. 4. Сосуды, аппараты и их элементы, в которых расслоения затрудняют теплоотдачу

5. В соответствии с требованиями п.2.2.5. ОСТ

Детали сосудов и аппаратов, подвергающиеся в процессе изготовления нагрузкам, вызывающим сдвиг, разрыв или выпучивание плакирующего слоя (например, штампованные днища; корпуса, подвергаемые отпуску и др.)

1 Аппараты, поставляемые на экспорт

2. В соответствии с требованиями технического проекта или другой нормативной документации

Сосуды и аппараты 2, 3, 4 и 5а групп по ОСТи их детали, не вошедшие по условиям применения двухслойного проката по I классу сплошности сцепления слоев

Любого класса и без контроля

Сосуды и аппараты 56 группы по ОСТ

В готовых изделиях допускаются расслоения, более допустимых по I классу, если они при выполнении технологических операций не приводят к перечисленным дефектам и не противоречат требованиям для условий эксплуатации и поставки оборудования из двухслойного проката I класса сплошности сцепления слоев.

Размеры конструктивных элементов (b, с, h, ά, ά1) — согласно ГОСТ 16098

Источник

Adblock
detector