Меню

Сталь 65г закалка в воде

Закалка и отпуск стали 65Г

Термообработка стали 65Г

Конструкционная высокоуглеродистая сталь марки 65Г, поставляемая соответственно техническим требованиям ГОСТ 14959, представляет собой сталь рессорно-пружинной группы. Она должна сочетать в себе высокую поверхностную твёрдость (для чего в её состав вводится до 1% марганца) и повышенную упругость. Все эти характеристики обеспечиваются в результате выполнения надлежащей термической обработки изделий, изготовленных из рассматриваемой стали.

Исходный химсостав стали и требования к деталям, изготавливаемым из неё

Относясь к разряду экономнолегированных, сталь 65Г относительно дешёвая, что обуславливает её широкое и эффективное применение. В числе главных её компонентов находятся:

  1. углерод (в пределах 0,62…0,70 %);
  2. марганец (в пределах 0,9…1,2 %);
  3. хром и никель (до 0,25…0,30 %).

Все остальные составляющие – медь, фосфор, сера и т.д. – относятся к примесям, и допускаются в химическом составе данного материала в количествах, ограничиваемых госстандартом.

При достаточной твёрдости (например, после поверхностной нормализации она должна составлять не менее 285 НВ), и прочности на растяжение (не ниже 750 МПа), сталь 65Г обладает достаточно высокой для своего класса ударной вязкостью – 3,0…3,5 кг∙м/см 2 . Это даёт возможность использовать материал для производства ответственных деталей подъёмно-транспортного оборудования (в частности, ходовых колёс мостовых кранов, катков), а также пружинных шайб и пружин неответственного назначения.

Стоит отметить, что детали пружин, изготовленные из стали 65Г, плохо свариваются, а также не могут противостоять периодически возникающим растягивающим напряжениям (относительное удлинение не превышает 9%), а потому не подлежат применению в неразъёмных конструкциях машин и механизмов. При проведении процессов холодного пластического деформирования сталь становится весьма малопластичной уже при малых (до 10%) деформациях, поэтому, при необходимости изготовления из неё пружин больших размеров, приходится применять нагрев исходных заготовок, даже под листовую штамповку. Впрочем, и в горячем состоянии предельные степени деформации стали 65Г не превышают 50…60%.

Химический состав стали 65Г

Несмотря на то, что в ходе деформационного упрочнения предел временного сопротивления материала увеличивается до 1200…1300 МПа, этих показателей недостаточно для того, чтобы придавать конечной продукции (например, пружинам) необходимую эксплуатационную прочность. Поэтому закалка и отпуск стали 65Г обязательны.

Оптимальные технологические процессы термической обработки материала

Выбор режима термообработки диктуется производственными требованиями. В большинстве случаев для придания надлежащих физико-механических характеристик используют:

  • нормализацию;
  • закалку с последующим отпуском.

Температурно-временные параметры термической обработки и выбор её вида зависят от исходной структуры стали. Данный материал принадлежит к сталям доэвтектоидного типа, поэтому в его составе при температурах выше нижней точки аустенитного превращения — 723 °С — на 30…50 °С содержится аустенит в виде твердой механической смеси с незначительным количеством феррита. Поскольку аустенит – более твёрдая структурная составляющая, чем феррит, то интервал закалочных температур для стали 65Г будет существенно ниже, чем для конструкционных сталей с более низким процентным содержанием углерода. Таким образом, температурный интервал закалки стали данной марки должен находиться в пределах не более 800…830 °С.

Примерно такой же температурный диапазон применяют и для проведения нормализации – технологической операции термообработки, которую используют с целью исправления структуры материала изделия, для снятия внутренних напряжений, а при последующей механической обработке полуфабриката – и для улучшения его обрабатываемости.

Поскольку ударная вязкость у закалённой стали 65Г – пониженная, то после закалки изделия из неё, в частности, пружины, обязательно должны пройти высокий отпуск. Происходящие в ходе отпуска мартенситно-аустенитные превращения снижают уровень возникающих во время закалки внутренних напряжений, снижают хрупкость и несколько поднимают показатели ударной вязкости.

Переход высокого отпуска исключается из режима только в том случае, когда заготовка проходит изотермическую закалку. В результате высокого отпуска сталь 65Г приобретает структуру сорбита, характерными особенностями которой являются мелкодисперсность структуры при сохранении изначально высоких показателей твёрдости, что полностью соответствует эксплуатационным требованиям.

Режимы закалки стали 65Г

Для соблюдения тех характеристик, которые заданы техническими условиями на эксплуатацию деталей, при выборе режима закалки учитывают следующие составляющие:

  1. способ и оборудование для нагрева изделий до требуемых температур;
  2. установление нужного температурного диапазона закалки;
  3. выбор оптимального времени выдержки при данной температуре;
  4. выбор вида закалочной среды;
  5. технологию охлаждения детали после закалки.

Интенсивность нагревания предопределяет качество получаемой структуры. Для малолегированных сталей процесс ведут достаточно быстро, поскольку при этом минимизируется риск обезуглероживания материала, и, как следствие, потеря деталью своих прочностных параметров. Однако чересчур быстрый нагрев вызывает к жизни иные неприятности. В частности, для крупных деталей, с большими перепадами поперечных сечений это может вызвать неравномерное прогревание металла, с перспективой дальнейшего появления закалочных трещин, выкрашивания углов и кромок.

Температура заготовки в зависимости от цвета при нагреве

Для достижения максимальной степени равномерности нагрева сталь сначала подогревают в предварительных камерах термических печей до температур, несколько ниже закалочных – от 550 до 700 °С, и только потом деталь направляется непосредственно в закалочную печь. Быстрее всего нагрев осуществляется в расплавах солей, медленнее – в газовых печах, и ещё медленнее – в электрических печах. Именно поэтому поверхностная закалка изделий из стали 65Г в индукционных печах выполняется достаточно редко. Индуктор, как закалочный агрегат, используется лишь для изделий с малым поперечным сечением. При выборе вида нагревательного устройства важен также состав атмосферы, которая в нём создаётся. В частности, для термических печей, работающих на газе, стараются всемерно снижать длительность пребывания детали в печи, поскольку в противном случае происходит выгорание части углерода поверхностного слоя.

Исходя из нормируемой для стали 65Г температуры закалки в 800…820 °С, предельная величина обезуглероженного слоя не должна быть более 50…60 мкм.

Температурный диапазон закалочных температур может корректироваться в зависимости от конфигурации изделия. Например, если деталь имеет сложные очертания, малые габариты и изготовлена из листового металла, то оптимальной температурой будет нижняя граница указанного выше диапазона. Управляя температурой закалки (например, с помощью автоматических датчиков температуры), можно менять толщину закалённого слоя и величину зоны, которая прокалилась менее остальных. К подобным техническим решениям прибегают, когда различные части детали работают в разных эксплуатационных условиях.

Сталь 65Г не боится перегрева, однако при закалке по верхнему значению температурного диапазона ударная вязкость материала начинает уменьшаться, что сопровождается ростом зерён в микроструктуре.

Для снижения коробления деталей, которые имеют тонкие рёбра и перемычки, пользуются нагревом в соляных закалочных ваннах. Чаще применяют расплав хлористого натрия, а для раскисления в рабочий объём ванны добавляют буру или ферросилиций.

Выдержка при закалке изделий из стали 65Г при заданном температурном интервале происходит до тех пор, пока полностью не произойдёт перлитное превращение. Этот процесс зависит от размера поперечного сечения детали и способа нагрева. Для наиболее употребительных случаев можно воспользоваться данными таблицы:

Временя нагрева и выдержки в зависимости от закалочной среды и габаритов заготовки

Наибольший габаритный размер детали, мм Закалка в пламенной печи Закалка в электропечи
Время нагрева, мин Время выдержки, мин Время нагрева, мин Время выдержки, мин
До 50 40 10 50 10
До 100 80 20 88 20
До 150 120 30 130 30
До 200 160 40 175 40

Охлаждение изделий после закалки производят не в воду, а в масло, это позволяет избежать возможной опасности растрескивания.

Технология последующего отпуска

Как уже указывалось, для получения структуры сорбита изделия из стали 65Г подвергают только высокому отпуску при температурах 550…600 °С, с охлаждением на спокойном воздухе. Для особо ответственных деталей иногда проводят дополнительный низкий отпуск. Диапазон его температур — 160…200 °С, с последующим медленным охлаждением на воздухе. Такая технология позволяет избежать накапливания термических напряжений в изделии, и повышает его долговечность. Для отпуска можно применять не только пламенные, но и электрические печи, оснащённые устройствами для принудительной циркуляции воздуха. Время выдержки изделий в таких печах — от 110 до 160 мин (увеличенные нормативы времени соответствуют деталям сложной конфигурации и значительных поперечных сечений).

Читайте также:  85хф сталь характеристики применение

В качестве рабочих сред при закалке стали 65Г не рекомендуется использовать воду и водные растворы солей. Ускорение процесса охлаждения, которое вызывает вода, часто сопровождается неравномерностью прокаливания.

Итоговый контроль качества закалки состоит в оценке макро- и микроструктуры металла, а также в определении финишной твёрдости изделия. Поверхностная твёрдость продукции, изготовленной из стали 65Г, должна находиться в пределах 35…40 НRC после нормализации, и 40…45 НRC – после закалки с высоким отпуском.

Источник

Закалка и отпуск стали 65г

Термообработка стали 65Г

Конструкционная высокоуглеродистая сталь марки 65Г, поставляемая соответственно техническим требованиям ГОСТ 14959, представляет собой сталь рессорно-пружинной группы. Она должна сочетать в себе высокую поверхностную твёрдость (для чего в её состав вводится до 1% марганца) и повышенную упругость. Все эти характеристики обеспечиваются в результате выполнения надлежащей термической обработки изделий, изготовленных из рассматриваемой стали.

Исходный химсостав стали и требования к деталям, изготавливаемым из неё

Относясь к разряду экономнолегированных, сталь 65Г относительно дешёвая, что обуславливает её широкое и эффективное применение. В числе главных её компонентов находятся:

  1. углерод (в пределах 0,62…0,70 %);
  2. марганец (в пределах 0,9…1,2 %);
  3. хром и никель (до 0,25…0,30 %).

Все остальные составляющие – медь, фосфор, сера и т.д. – относятся к примесям, и допускаются в химическом составе данного материала в количествах, ограничиваемых госстандартом.

При достаточной твёрдости (например, после поверхностной нормализации она должна составлять не менее 285 НВ), и прочности на растяжение (не ниже 750 МПа), сталь 65Г обладает достаточно высокой для своего класса ударной вязкостью – 3,0…3,5 кг∙м/см 2 . Это даёт возможность использовать материал для производства ответственных деталей подъёмно-транспортного оборудования (в частности, ходовых колёс мостовых кранов, катков), а также пружинных шайб и пружин неответственного назначения.

Стоит отметить, что детали пружин, изготовленные из стали 65Г, плохо свариваются, а также не могут противостоять периодически возникающим растягивающим напряжениям (относительное удлинение не превышает 9%), а потому не подлежат применению в неразъёмных конструкциях машин и механизмов. При проведении процессов холодного пластического деформирования сталь становится весьма малопластичной уже при малых (до 10%) деформациях, поэтому, при необходимости изготовления из неё пружин больших размеров, приходится применять нагрев исходных заготовок, даже под листовую штамповку. Впрочем, и в горячем состоянии предельные степени деформации стали 65Г не превышают 50…60%.

Химический состав стали 65Г

Несмотря на то, что в ходе деформационного упрочнения предел временного сопротивления материала увеличивается до 1200…1300 МПа, этих показателей недостаточно для того, чтобы придавать конечной продукции (например, пружинам) необходимую эксплуатационную прочность. Поэтому закалка и отпуск стали 65Г обязательны.

Оптимальные технологические процессы термической обработки материала

Выбор режима термообработки диктуется производственными требованиями. В большинстве случаев для придания надлежащих физико-механических характеристик используют:

  • нормализацию;
  • закалку с последующим отпуском.

Температурно-временные параметры термической обработки и выбор её вида зависят от исходной структуры стали. Данный материал принадлежит к сталям доэвтектоидного типа, поэтому в его составе при температурах выше нижней точки аустенитного превращения — 723 °С — на 30…50 °С содержится аустенит в виде твердой механической смеси с незначительным количеством феррита. Поскольку аустенит – более твёрдая структурная составляющая, чем феррит, то интервал закалочных температур для стали 65Г будет существенно ниже, чем для конструкционных сталей с более низким процентным содержанием углерода. Таким образом, температурный интервал закалки стали данной марки должен находиться в пределах не более 800…830 °С.

Примерно такой же температурный диапазон применяют и для проведения нормализации – технологической операции термообработки, которую используют с целью исправления структуры материала изделия, для снятия внутренних напряжений, а при последующей механической обработке полуфабриката – и для улучшения его обрабатываемости.

Поскольку ударная вязкость у закалённой стали 65Г – пониженная, то после закалки изделия из неё, в частности, пружины, обязательно должны пройти высокий отпуск. Происходящие в ходе отпуска мартенситно-аустенитные превращения снижают уровень возникающих во время закалки внутренних напряжений, снижают хрупкость и несколько поднимают показатели ударной вязкости.

Переход высокого отпуска исключается из режима только в том случае, когда заготовка проходит изотермическую закалку. В результате высокого отпуска сталь 65Г приобретает структуру сорбита, характерными особенностями которой являются мелкодисперсность структуры при сохранении изначально высоких показателей твёрдости, что полностью соответствует эксплуатационным требованиям.

Режимы закалки стали 65Г

Для соблюдения тех характеристик, которые заданы техническими условиями на эксплуатацию деталей, при выборе режима закалки учитывают следующие составляющие:

  1. способ и оборудование для нагрева изделий до требуемых температур;
  2. установление нужного температурного диапазона закалки;
  3. выбор оптимального времени выдержки при данной температуре;
  4. выбор вида закалочной среды;
  5. технологию охлаждения детали после закалки.

Интенсивность нагревания предопределяет качество получаемой структуры. Для малолегированных сталей процесс ведут достаточно быстро, поскольку при этом минимизируется риск обезуглероживания материала, и, как следствие, потеря деталью своих прочностных параметров. Однако чересчур быстрый нагрев вызывает к жизни иные неприятности. В частности, для крупных деталей, с большими перепадами поперечных сечений это может вызвать неравномерное прогревание металла, с перспективой дальнейшего появления закалочных трещин, выкрашивания углов и кромок.

Температура заготовки в зависимости от цвета при нагреве

Для достижения максимальной степени равномерности нагрева сталь сначала подогревают в предварительных камерах термических печей до температур, несколько ниже закалочных – от 550 до 700 °С, и только потом деталь направляется непосредственно в закалочную печь. Быстрее всего нагрев осуществляется в расплавах солей, медленнее – в газовых печах, и ещё медленнее – в электрических печах. Именно поэтому поверхностная закалка изделий из стали 65Г в индукционных печах выполняется достаточно редко. Индуктор, как закалочный агрегат, используется лишь для изделий с малым поперечным сечением. При выборе вида нагревательного устройства важен также состав атмосферы, которая в нём создаётся. В частности, для термических печей, работающих на газе, стараются всемерно снижать длительность пребывания детали в печи, поскольку в противном случае происходит выгорание части углерода поверхностного слоя.

Исходя из нормируемой для стали 65Г температуры закалки в 800…820 °С, предельная величина обезуглероженного слоя не должна быть более 50…60 мкм.

Температурный диапазон закалочных температур может корректироваться в зависимости от конфигурации изделия. Например, если деталь имеет сложные очертания, малые габариты и изготовлена из листового металла, то оптимальной температурой будет нижняя граница указанного выше диапазона. Управляя температурой закалки (например, с помощью автоматических датчиков температуры), можно менять толщину закалённого слоя и величину зоны, которая прокалилась менее остальных. К подобным техническим решениям прибегают, когда различные части детали работают в разных эксплуатационных условиях.

Сталь 65Г не боится перегрева, однако при закалке по верхнему значению температурного диапазона ударная вязкость материала начинает уменьшаться, что сопровождается ростом зерён в микроструктуре.

Для снижения коробления деталей, которые имеют тонкие рёбра и перемычки, пользуются нагревом в соляных закалочных ваннах. Чаще применяют расплав хлористого натрия, а для раскисления в рабочий объём ванны добавляют буру или ферросилиций.

Выдержка при закалке изделий из стали 65Г при заданном температурном интервале происходит до тех пор, пока полностью не произойдёт перлитное превращение. Этот процесс зависит от размера поперечного сечения детали и способа нагрева. Для наиболее употребительных случаев можно воспользоваться данными таблицы:

Временя нагрева и выдержки в зависимости от закалочной среды и габаритов заготовки

Наибольший габаритный размер детали, мм Закалка в пламенной печи Закалка в электропечи
Время нагрева, мин Время выдержки, мин Время нагрева, мин Время выдержки, мин
До 50 40 10 50 10
До 100 80 20 88 20
До 150 120 30 130 30
До 200 160 40 175 40
Читайте также:  Сечение полосовой стали как считать

Охлаждение изделий после закалки производят не в воду, а в масло, это позволяет избежать возможной опасности растрескивания.

Технология последующего отпуска

Как уже указывалось, для получения структуры сорбита изделия из стали 65Г подвергают только высокому отпуску при температурах 550…600 °С, с охлаждением на спокойном воздухе. Для особо ответственных деталей иногда проводят дополнительный низкий отпуск. Диапазон его температур — 160…200 °С, с последующим медленным охлаждением на воздухе. Такая технология позволяет избежать накапливания термических напряжений в изделии, и повышает его долговечность. Для отпуска можно применять не только пламенные, но и электрические печи, оснащённые устройствами для принудительной циркуляции воздуха. Время выдержки изделий в таких печах — от 110 до 160 мин (увеличенные нормативы времени соответствуют деталям сложной конфигурации и значительных поперечных сечений).

В качестве рабочих сред при закалке стали 65Г не рекомендуется использовать воду и водные растворы солей. Ускорение процесса охлаждения, которое вызывает вода, часто сопровождается неравномерностью прокаливания.

Итоговый контроль качества закалки состоит в оценке макро- и микроструктуры металла, а также в определении финишной твёрдости изделия. Поверхностная твёрдость продукции, изготовленной из стали 65Г, должна находиться в пределах 35…40 НRC после нормализации, и 40…45 НRC – после закалки с высоким отпуском.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Добрый день, пятницо прошла успешно. Один «дядечка» утверждал, что делая ножики из 65Г калит её на 65 едениц, в чем я крайне сомневаюсь. Развейте или подтвердите миф.

Без отпуска на 63HRC в легкую. После низкого отпуска 60-59HRC стабильно. Может еще какая-то криообработка.
Посмотрим, что скажут более опытные кузнецы иль термисты.

А чего тут сомневаться?
Чистая правда!
Как есть 65Г калится по Роквеллу на 65. Получается . Правильно, Г!
Жаль, что у него не 110Х18
И закалил бы на HRC 110, и вышло бы Хорошо

Если после закалки на воду и без отпуска , то ХЗ, может и дать единицы 63-64. После отпуска останется 60-62 максимум, да и то много, ИМХО.

60с2а легко дает 63HRC, но,мужики, одно дело калить простое сечение(квадрат, круг. ), и совсем другое – деталь со сложным сечением, которым и яв-ся НОЖ.

если азотировать или цианировать – может и получится

(из-за угла, тихонечкоо) А все таки чем плоха 65Г (кроме ржавучести и вездеваляния). (спрятался )

Ничем, хорошая вещь, но везде не валяется 🙂

quote: хорошая вещь, но везде не валяется

При определенном шаманстве и ст3 дает весьма неплохие результаты в качестве ножевого материала(клинки).
Вопрос в качественной и правильной термообработке.

Прошу прощения у ТС. У меня валяется, вот и терзают сомнения: пустить в дело или

quote:Получается . Правильно, Г![/QUOTE]

Выйдет вполне нормально, если на 65 не калить . 58-59 для рессоры, ИМХО, в самый раз.

Спасибо! За сим удаляюсь, не буду мешать ТС.

Есть полотно электрофуганка 65г подскажите какая твердость примерно оно может быть))? на зуб, тьфу на надфиль пока не особо научился определять твердость)) на сколько их калят обычно ?

quote: Originally posted by Mr.V:
Есть полотно электрофуганка 65г подскажите какая твердость примерно оно может быть))? на зуб, тьфу на надфиль пока не особо научился определять твердость)) на сколько их калят обычно ?

а вообще по поводу 65г на клинковом материале, 60ед-терзают смутные сомнения. Всегда видел не выше 55-57ед. Почему-то для «под 60» берут всякие «У» и «ШХ».

quote: Почему-то для «под 60» берут всякие «У» и «ШХ».

64 на 65Г получить можно, думаю, что если извратится то и 65. В любом случае погрешность измерения твердости в этом диапазоне порядка +- 1HRc.
Другое дело что нормальная рабочая твердость для этой стали не выше 62.
То, что большинство производителей делают изделия с меньшей твердостью – все зависит от целевого назначения (ну и менталитета производителя помноженного на уровень технологической культуры).

А насчет рессорно-пружинных и инструментальных – может кто нибудь объяснит мне в чем ПРИНЦИПИАЛЬНАЯ разница между например ст. 70 и У7? Или между 65Г и У7Г?

quote: А насчет рессорно-пружинных и инструментальных – может кто нибудь объяснит мне в чем ПРИНЦИПИАЛЬНАЯ разница между например ст. 70 и У7? Или между 65Г и У7Г?

Для 65Г и 60С2А 55-57ед само то.Большая твердость приводит к тому, что материл становится более хрупким, в метале появляется напряжение, при уроне на твердую поверхность может разлетается как стекло. В рессорно-пружинной стали в процентном колличестве находится окись модибдена, которая благоприятно влияет на структуру металла. Он одновременно становится твердым, прочным и вязким-и это для предмета важно, так как широко применется для длиноклинкового ХО,в боевых действиях предмет может получить некоторую деформацию, но не сломается, заточка нагартуется, завернется,но не выкрошится. Предмет можно будет выровнять и оттянуть как тяпку. У8-10 отличается от рессорно-пружинной тем, что последняя более устойчивая на излом. С уважением.

quote: Originally posted by Alan_B:

А насчет рессорно-пружинных и инструментальных – может кто нибудь объяснит мне в чем ПРИНЦИПИАЛЬНАЯ разница между например ст. 70 и У7? Или между 65Г и У7Г?

Про принципиальную разницу не скажу, но есть разница в количестве примесей: до 0,025 серы и фосфора в 70, в У7 до 0,030. ИМХО, разница как между ШХ15 и Х – при равном хим. составе первая может заменять вторую, но не наоборот

quote: в чем ПРИНЦИПИАЛЬНАЯ разница между например ст. 70 и У7? Или между 65Г и У7Г?

Коллектив, а поделились бы кто и как её мордует . Я сейчас тормознулся на варианте:
– клинок – толщина 3 и более – с 800. 810 через воду в масло. Есть ньюансы в зависимости от длины (всё-таки коробит её в воде, если чуток передержать). Пару отпусков с 200 по часу.
– толщина 1,5. 2,5 – с 830 только в масло с потягом. Три отпуска с 200.
С более тонкими не сталкивался.
Может у кого есть более практичные варианты?

Скажу вам одну страшную вещь – нет никакой разницы между сталями 70 или У7 или между Х и ШХ15. Названия просто исторически растут из правил, принятых для определенной группы сталей. Кстати, кто и когда видел в крайний раз сталь Х? То то и оно, нет ее, есть ШХ15.
Ту же Р6М5 в случае, если ее производят для штампов или подшипников обозначают как 9Х4В6М5Ф2. Просто дань традиции, и ничего больше. По металлургическому качеству стали одинаковы (особенно при наших допусках по составу и технологической культуре).

Соответственно, видеть принципиальные различия между одинаковыми железками мне Заратустра не позволяет.

А я вот. надо сказать, профан в энтом деле. старую рессору розогрел, обстучал на железной болванке(нет у меня наковальни)что-б выровнять(грел в банной печке, прямоточка).После того, как вывел форму, спуски(грубо),грел в то-й же-ж печурке(пытаясь, как мог, соблюсти температуру по цветовой таблице, ушло минут 30).После чего заготовка была окунута в соляру(пшик, дым, вонь и т.д).Остыла в соляре, положил обратно в печь, но не на угли, а близко к поддувалу. Лежала там до конца бани(часа 2-3).Пару раз переворачивал(на всякий случай)После чего-окончательная обработка, довел спуски до ума(убрав заодно образовавшиеся каверночки),шлифовка-полировка(в то время травлением еще не баловался). Клин был душевно юзан, не сломался. Про твердость сказать точно не могу(но стекло не резал, это точно),но по сравнению с тем-же(но не каленым) куском рессоры-стал значительно тверже. Не претендую на правильность термообработки, описал, как было. Прошу не забывать-печь-прямоточная, без колен, труба от печи 4 метра с гаком(тянееет. пипец!Горят даже сырые дрова на ура!Но. не экономна)

Читайте также:  Сталь комета характеристики плюсы

Деман, неплохой вариант . Совмещение приятного с полезным. Но нет под рукой бани , а типа буржуечки в саду. Некогда мне там играться – землю пахать надо да траву выкашивать

Деман ты все правильно делал. Рессорная сталь калится на масло, нефть,керосин, соляре,амиак. Тем боллее рессорную сталь, прокатанную,и вновь тобой закаленную-нормалезованую. Сам так пользуюсь, так,как получаются приличные клинки на уровне ЗОФа, и даже по характеристикам чуть лучше. С уважением.

quote: (пытаясь, как мог, соблюсти температуру по цветовой таблице, ушло минут 30)

2 DECEMBER
Толщина заготовки при калке влияет на время выдержки при температуре калки для черных сталей. Приблизительно 1 мин на 1 мм толщины. Для нержавейки или Х12 добавляю еще 5 -7 мин. Закаливаю в масло простым окунанием. После закалки уверенно царапает стекло. Сразу в эл.печь 150-160 градусов на 2 часа. После отпуска стекло не царапает. ШХ15 после калки ведет немного, попытки выровнять привели к поломке клинка, больше не ровняю, оставляю запас и стачиваю. Успехов.

quote: Соответственно, видеть принципиальные различия между одинаковыми железками мне Заратустра не позволяет.

насьяльника ма, секаса осенно не хватает.

quote: Originally posted by ПЫХ:

насьяльника ма, секаса осенно не хватает.

На след неделе заедем – секаса будет!

Поясните как калят через воду в масло.

Я делал так: охлаждал в воде, пока не перестанет светиться, плюс еще немного (пару секунд), затем – в масло до полного остывания. Суть в том, чтобы охлаждать вплоть до начала мартенситного превращения быстро, а дальше медленнее (меньше вероятность деформации/трещин). Разницы в твердости по сравнению с закалкой просто в воде быть не должно.

Для изготовления упругих элементов общего назначения, применяются легированные рессорно-пружинные стали.

Особенность работы деталей типа упругих элементов состоит в том, что в них используются в основном упругие свойства стали и не допускаются при нагрузке (статической, динамической, ударной) возникновение пластической деформации.

В связи с этим стали должны иметь высокое сопротивление малым пластическим деформациям, т.е. высокие пределы упругости (текучести) и выносливости при достаточной пластичности и в сопротивлении хрупкому разрушению.

Важные характеристики сталей данного типа – релаксационная стойкость и прокаливаемость. Для обеспечения этих требований сталь должна иметь однородную структуру, т. е. хорошую закаливаемость и сквозную прокаливаемость (структуру мартенсита по всему сечению детали после закалки).

Наличие в структуре стали феррита, продуктов эвтектоидного распада, остаточного аустенита снижает упругие свойства детали. Известно, что сопротивление малым пластическим деформациям возрастает с уменьшением размера зерна в стали.

К группе рессорно-пружинных сталей общего назначения относятся стали перлитного класса с содержанием углерода 0,5. 0,7%, которые для улучшения свойств (прокаливаемость, предел выносливости, релаксационная стойкость, мелкозернистая структура) дополнительно легируют кремнием (1,5. 2,8%), марганцем (0,6. 1,2 %), хромом (0,2. 1,2%), ванадием (0,1. 0,25%), вольфрамом (0,8. 1,2%), никелем (1,4. 1,7).

Эксплуатационные свойства стали приобретают после термической обработки, состоящей в закалке и среднем отпуске (350. 5200С) на тростит отпуска (рис.1а).

Применение находит также изотермическая закалка на нижний бейнит (рис.1б).

термический закалка сталь легированный

В соответствии с заданием необходимо подобрать режим термической обработки стали 65Г. Сталь обладает стойкостью к росту зерна. Имеет высокие механические свойства.

Примем первый вариант термической обработки (рис. 1а): закалку и средний отпуск. По данным ГОСТа 14959-79 температура закалки для 65Г составляет 840-8600С (АС3 = 7880С).

В качестве охлаждающей среды применяем масло.

Последующий отпуск проводим при температуре 420-4500С (выше температуры необратимой отпускной хрупкости). Получаемая структура тростита отпуска (мелкозернистая ферритоцементитная смесь) обеспечит высокое сопротивление малой пластической деформации при достаточных значениях пластичности и вязкости (рис.2а, б) с НRC = 40. 50.

Указанный режим термической обработки (рис.3) обеспечивает получение следующих свойств (минимальных): s 0,2 > 1270МПа; s в > 1470МПа; d > 12%; y > 42%; НВ » 3900 – 4800 МПа (отпуск 4500 ).

Сталь 65Г – сталь перлитного класса. Кремний несколько повышает точку А3 и снижает А4. Критические точки стали АС1 – 7520С , АС3 – 7880С. Учитывая содержание углерода, сталь по структуре отжига относится к доэвтектоидным сталям, однако кремний сдвигает точку S диаграммы Fe -Fe3C до 0,7 % С, т. е. сталь становится почти эвтектоидной. Поэтому необходимо проведение полной закалки (температура А3 – 30-500С, т.е. » 840-8600С). При полной закалке сталь нагревают до однофазной мелкозернистой аустенитной структуры (рис.4).

Последующее охлаждение в масле со скоростью большей чем V кр (наименьшая скорость охлаждения, при которой аустенит превращается в мартенсит) обеспечивает получение мелкозернистого мартенсита (рис.5)

VК – наименьшая скорость охлаждения, при которой аустенит превращается в мартенсит. Рассмотрим превращения, происходящие в стали 65Г при нагреве с исходной равновесной структуры Ф + Ц. На практике при обычных скоростях нагрева (электропечи) под закалку перлит сохраняет свое пластинчатое или зернистое строение до температуры АС1 (до 7520С для стали 65Г). При температуре АС1 в стали происходит превращение перлита в аустенит. Кристаллы (зерна) аустенита зарождаются в основном на границах фаз феррита и цементита. При этом параллельно развиваются два процесса: полиморфный переход Fea ® Fe g ; растворение аустенита в цементите.

Представим общую схему превращения П (Ф +Ц) ? А1 ® (Ф + Ц + А)1 ® (А + Ц)2 ® ( А неоднородный )3 ® (А гомогенный)4 Образование зерен аустенита происходит с большей скоростью, чем растворение цементита перлита, поэтому необходима выдержка стали при температуре закалки для полного растворения цементита и получения гомогенного аустенита.

Из рис.6 видно, что фазовая кристаллизация приводит к измельчению зерна в стали. При этом чем дисперснее структура перлита (Ф +Ц) и чем выше скорость нагрева стали, тем больше центров зарождения аустенита, а, следовательно, возрастает дисперсность продуктов его распада. Увеличение дисперсности продуктов распада аустенита приводит к увеличению пластичности, вязкости, уменьшение чувствительности к концентраторам напряжений. Рассмотрим изменение структуры в стали при закалке в масле. При непрерывном охлаждении стали со скоростью большей чем критическая скорость (рис.5) аустенит превращается в мартенсит. Мартенситное превращение развивается в сталях с высокой скоростью (1000-7000м/с) в интервале температур Мн. Мк. При этом необходимо учитывать, что с увеличением % С точки Мн и Мк понижаются, в то время как введение кремния их повышает.

Из рис.7 видно, что температура Мн и Мк определяются в основном химическим составом стали. В результате закалки стали 65Г структура может иметь кроме мартенсита и некоторое количество остаточного аустенита. Возможность мартенситного превращения в стали объясняется наличием принципа структурного и размерного соответствия между аустенитом – плоскость (111) и мартенситом – плоскость (110), т.е. g ® a переход носит бездиффузионный характер. Превращение аустенита в мартенсит происходит путем кооперативного направленного сдвига только атомов железа на расстояние меньше межатомных. Полученный мартенсит представляет собой перенасыщенный твердый раствор углерода в a – железе и имеет тетрагональную кристаллическую решетку. Атомы углерода занимают в основном октаэдрические поры. Образование в результате закалки мартенсита приводит к большим внутренним напряжениям, повышению твердости, прочности (фазовому наклепу), однако при этом возрастает склонность стали к хрупкому разрушению, что требует проведения дополнительно последующего отпуска.

Источник

Adblock
detector