Меню

Расчет времени закалки стали

Время нагрева

Из учебника А.П.Гуляева «Металловедение»

Общее время нагрева складывается из времени нагрева до заданной температуры (τн) и времени выдержки при этой температуре (τв), следовательно
τобщ = τн + τв (1)

Величина τн зависит от нагревающей способности среды, от размеров и формы деталей, от их укладки в печи; τв зависит от скорости фазовых превращений, которая определяется степенью перенагрева выше критической точки и дисперсностью исходной структуры.

Практически величина τв может быть принята равной 1 мин для углеродистых и 2 мин для легированных сталей (Так как в легированных сталях карбиды медленнее переходят в твердый раствор.). При нагреве крупных деталей (когда τн значительно больше чем 1 — 2 мин) величиной τв можно пренебречь; в случае мелких деталей (диаметром или толщиной менее 1 мм) пренебрегают составляющей τн.

Нагрев обычно проводят в газовой среде (воздух, продукты сгорания топлива), в расплавленных солях и расплавленных металлах. Соотношение времени τн в этих средах примерно таково: в газовых средах 1, расплавленных солях 0.5 и расплавленных металлах 0.25.

Чем крупнее изделие, тем больше τн. Если сравнивать время нагрева (τн) шара, цилиндра, параллелепипеда и пластины при условии, что Dшара = dцил = aпар = δпл (рис. 230), то соотношение времени нагрева следующее: для шара 1, параллелепипеда 2,5, цилиндра 2, пластины 4.

Рис. 230. Фактор формы при нагреве изделия
Шар диаметром D
Цилиндр диаметром сечения d
Параллелограмм с квадратным сечением a×a
Пластина толщиной δ

Наконец, если сравнивать продолжительность нагрева τн для одинаковых изделий, из которых одно нагревается равномерно со всех сторон, другое только с трех сторон (например, параллелепипеда, лежащего на холодном полу печи) и третье — только с одной стороны, то эти продолжительности будут относиться как 1 : 1.5 : 4.

. Итак, время нагрева зависит от многих факторов и на практике колеблется от 1 — 2 мин (нагрев мелких деталей в соли) до многих часов (нагрев крупных деталей тяжелого машиностроения в печи).

Точно установить время нагрева можно лишь опытным путем для данной детали в данных конкретных условиях, а приближенно — можно подсчитать. Имеется несколько приближенных способов расчета времени нагрева.

Расчет проводят по формуле (1). Пусть τ равно 1 или 2 мин:
τн = 0.1D1K1K2K3, (2)

где
D1 — размерная характеристика изделия (мм) — минимальный размер максимального сечения (т.е. детали находят максимальное поперечное сечение и в нем — минимальный размер; в пластине это будет ее толщина δ — рис. 230). Это и будет характеристический размер D1;
К1 — коэффициент среды (для газа 2, соли 1, металла 0.5);
К2 — коэффициент формы (для шара 1, цилиндра 2, параллелепипеда 2.5, пластины 4);
К3 — коэффициент равномерности нагрева (всесторонний нагрев 1, односторонний 4).

Пример. Определить время нагрева детали, изображенной на рис. 231. Нагрев всесторонний, осуществляется в печи, сталь легированная.

Рис. 231. Изделие сложной формы. Нахождение размерной характеристики для определения времени нагрева под закалку

Максимальное поперечное сечение 30 × 40, следовательно, D1 = 30. Находим τн, подставляя значения коэффициентов в формулу (2):
τн = 0.1×30×2×2.5×1 = 15 (мин), а
τобщ = 15 + 2 = 17 (мин).

Следует отметить, что сказанное относится к нагреву примерно до 800 — 900 °С, т.е. до температур, обычно принятых для нагрева под закалку, отжиг, нормализацию большинства марок сталей.

При необходимости проводить нагрев в печи до более высокой температуры (например, нагрев под закалку нержавеющих или быстрорежущих сталей) время нагрева сокращается, так как интенсивность нагрева лучеиспусканием быстро возрастает с повышением температуры. Наоборот, нагрев в печи до температур ниже 800 — 900 °С, например нагрев под отпуск, протекает значительно медленнее, чем ниже температура, так как при низких температурах нагрев осуществляется главным образом конвекцией, а не лучеиспусканием.

Естественно, что все рассмотренные случаи относятся к таким, когда нагревающий агрегат (печь, ванна) достаточно мощный и внесенные в него холодные детали заметным образом не снижают температуры рабочего пространства.

Использована публикация:
Гуляев А.П. Металловедение. Учебник для втузов. 6-е изд., перераб. и доп. М.: Металлургия, 1986. 544 с.
стр. 257 — 259.

Web-сайт “Термист” (termist.com)
Термомеханическое упрочнение арматурного проката

Отсутствие ссылки на использованный материал является нарушением заповеди «Не укради»

Источник

Технологии, секреты, рецепты

Имитация черного дерева (протрава).

Гладко обструганное черное (эбеновое) дерево имеет чистый черный цвет без блеска и обладает столь мелким строением волокон, что последнее невозможно увидеть невооруженным глазом. Удельный вес этого дерева очень велик. Полируется черное дерево настолько хорошо, что отполированная поверхность е. Подробнее

Имитации орехового дерева (протрава).

Обыкновенное ореховое дерево имеет светло-бурый оттенок, который даже после полирования выглядит не очень красиво. Поэтому натуральному ореховому дереву следует придать более темный тон, что достигается обработкой раствором марганцовокислого калия. Как только дерево высохнет, этот раствор наносят втори. Подробнее

Имитации розового дерева (протрава).

Розовое дерево отличается темно-красными жилками. Для имитации этого дерева берется клен, как наиболее подходящий по своему строению. Кленовые дощечки или фанеры должны быть тщательно отшлифованы, прежде чем идти в обработку, так как только в этом случае они хорошо прокрашиваются.

Имитация дубового дерева (протрава).

Варят в течение часа смесь из 0,5 кг кассельской земли, 50 г поташа в 1 литре дождевой воды, затем полученный темный отвар процеживают через полотно и варят до сиропообразного состояния. После этого выливают ее в совершенно плоские ящики из жести (крышки из-под жестянки), дают затвердеть и измельчают при. Подробнее

Имитация красного дерева (протрава).

Предназначенное для протравы дерево должно быть хорошо высушено, а нанесение протравы лучше всего производить при помощи кисти, которая после каждого употребления должна быть тотчас вымыта и высушена. Очень красивую и прочную протраву готовят, смешивая в склянке 500 г тонко измельченного сандала, 30 . Подробнее

Имитация палисандрового дерева (протрава).

Палисандровое дерево имеет темно-бурую окраску с характерными красноватыми жилками. Так как ореховое дерево ближе всего к палисандровому, то для имитации последнего и берут ореховое, с другими сортами дерева не получается такой красивой подделки.

Ореховое дерево сначала шлифуют пемзой, а потом р. Подробнее

Имитация серого клена (протрава).

В качестве серой протравы для дерева хорошо использовать растворимую в воде прочную и легкую анилиновую краску нигрозин. Раствор 7 частей нигрозина в 1000 частях воды окрашивает дерево в красивый серебристо-серый цвет, который настолько прочен, что даже по прошествии двух лет нисколько не изменяется.

Источник

Расчет времени нагрева, выдержки и охлаждения при проведении термической обработки, страница 5

Общие сведения о технологии закалки стали

Основные цели, решаемые комплексом закалка + отпуск:

  • повышение твердости;
  • повышение прочностных характеристик;
  • снижение пластичности до допустимой величины;
  • возможность использования пустотелых изделий вместо полнотелых, что позволяет снизить массу металлоизделия и металлоемкость производственного процесса.

Основные этапы закалки:

  • нагрев до температур, при которых осуществляется изменение структурного состояния металла;
  • выдержка, установленная в технологической карте;
  • охлаждение со скоростью, обеспечивающей формирование заданной кристаллической структуры.

После закалки проводят отпуск, который заключается в нагреве металла до температур, лежащих ниже линии фазовых превращений, с дальнейшим медленным понижением температуры. На результат термообработки влияют:

  • температура нагрева;
  • скорость роста температуры;
  • период выдержки при закалочных температурах;
  • охлаждающая среда и скорость снижения температуры.

Ключевым параметром является температура нагрева, от которой зависит перестройка и формирование новой структурной решетки. По глубине действия закалку разделяют на объемную и поверхностную. В машиностроении обычно используется объемная закалка, после которой твердость поверхности и сердцевины отличается незначительно. Поверхностная термообработка востребована для деталей, для которых важна высокая твердость поверхности и вязкая сердцевина.

Расчет времени нагрева, выдержки и охлаждения при проведении термической обработки, страница 5

По таблице 6 приложения, определяем среднюю теплоемкость металла для 800ºС с

Плотность стали марки ШХ 15, определяем по таблице 5 приложения, g

Примечание: Дж переводим в Вт×ч, т.е. 1 Вт×ч = 3600 Дж.

По графику (рисунок А.1, приложение) зная q

Определяем время нагрева преобразовав формулу (20):

2.2 Расчет времени нагрева в среде с переменной

температурой (методические печи)

Определить время нагрева штанги из стали марки ШХ15 диаметром 150 мм до температуры 820ºС в методической печи, имеющей температуру у окна посадки 600ºС, а у окна выдачи — 900ºС.

Примем встречный поток движения среды и металла (существует параллельное движение среды и металла) и определим время нагрева по некоторой температуре t

усл. при условном коэффициенте теплоотдачи
a
усл.

где — начальная температура печной среды в момент загрузки металла; ºС (а*также темпер тура закалочной среды — воды, масла при закалке);

— отношение «водяных чисел» среды и металла;

0

начальная температура металла (или в случае закалки — температура металла перед закалкой).

Под «водяным числом» понимается количество воды в кг/ч ºС, которое по своей теплоемкости соответствует теплоемкости потока газов или нагреваемого в печи металла. При охлаждении водяное число будет соответствовать теплоемкости, охлаждаемой жидкости или охлаждаемого металла.

о.дым – объем дымовых газов, м3/с, при 0 ºС и 760×123,3 Па;

эвт — теплоемкость газов, Дж/кг ºС;

м — теплоемкость металла, Дж/кг ºС;

— производительность печи, кг/ч.

При встречном потоке газов и нагреваемого металла температура дымовых газов понизится на 900ºС — 600ºС = 300ºС, а температура нагреваемого металла на 820ºС — 20ºС = 800ºС.

В этом случае отношение водяных чисел определится как отношение:

— коэффициент теплоотдача, рассчитывается по формуле (см. ниже);

К — коэффициент, учитывающий форму изделия (для пластины К = 3,0; для цилиндра К = 3,5; для шара К = 5,0).

Возьмем с = 3,505 Вт/м2×К4 (из примера 2).

Критерий Био определяется по формуле (16) :

ср = 34,85 Вт/м2ºС (см. пример 2)

услпри К = 3,5 (для цилиндра).

Определим температурный критерий, заменив в формуле (19) t

усл = 0,12 и
q
усл = 0,131 с помощью графика (рисунок А.1, б, приложение) находим
Fo
= 8,7.

Определим время нагрева по формуле (22):

— коэффициент температуропроводности равен 0,023

Примечание. Для параллельного движения среды и металла условный коэффициент теплопередачи a

усл и условная температура
t
усл определяется по формулам:

3 Расчет времени выдержки

Выдержка при конечной температуре нагрева необходима для выравнивания температуры между центром и поверхность до требуемой величины.

Если в момент окончания нагрева изделия температура в центре изделия неизвестна, ей необходимо определить. Рассмотрим пример расчета времени выдержки для штанги из стали ШX15 диаметром 150 мм до температуры 830ºС (в печи с температурой 1000ºС) см. пример 2.

В этом примере мы определим Bi

= 0,39 и
Fo
= 2,5, пользуясь полученными значениями определим:

а) по графику (рисунок А.1, б, приложение) температурный критерий q

б) температуру в центре изделия можно определить по формуле:

центра = 1000 – (1000 — 20) × 0,18 = 823ºС

= 830 – 823 = 7ºC (перепад температур в момент нагрева между поверхностью (
t
м.к.) и центром изделия);

в) время выдержки определяют по формулам:

— радиус детали (при двухстороннем нагреве);

коэффициент температуропроводности, м2/ч.

где Кф — коэффициент формы тела;

КDt — коэффициент степени выравнивания температур.

Время определится следующим образом. По таблице 7 приложения принимая длину штанги 1 м, находим Кф = 0,81. КDt находим по таблице 8 приложения по соотношению

= 0,023 м2/ч(определено в примере 2).

Какие стали подвергают закалке

Не все марки сталей могут подвергаться закалке. Марки с содержанием углерода ниже 0,4% практически не изменяют твердость при закалочных температурах, поэтому этот способ для них не применяется. Закалочную технологию чаще всего применяют для инструментальных сталей.

Таблица правильных режимов закалки и отпуска для некоторых типов инструментальных сталей

Марка стали Температура закалки стали Среда охлаждения после закалочного нагрева Температура отпуска Среда охлаждения после отпуска
У7 800°C вода 170°C вода, масло
У7А 800°C вода 170°C вода, масло
У8, У8А 800°C вода 170°C вода, масло
У10, У10А 790°C вода 180°C вода, масло
У11, У12 780°C вода 180°C вода, масло
Р9 1250°C масло 580°C воздух в печи
Р18 1250°C масло 580°C воздух в печи
ШХ6 810°C масло 200°C воздух
ШХ15 845°C масло 400°C воздух
9ХС 860°C масло 170°C воздух

Виды закалки – с полиморфным превращением и без него

Закалка сталей протекает с полиморфным превращением, цветных металлов и сплавов – без них.

Закалка сталей с полиморфным превращением

В углеродистых сталях при повышении температур выше определенного уровня происходит ряд фазовых превращений, вызывающих изменения кристаллической решетки. При критических температурах, значение которых зависит от процентного содержания углерода, происходит распад карбида железа и образование раствора углерода в железе, называемого аустенитом. При медленном остывании аустенит постепенно распадается, и кристаллическая решетка приобретает исходное состояние. Если углеродистые стали охлаждать с высокой скоростью, то в зависимости от режима закалки в них образуются различные фазовые состояния, самый прочный из них – мартенсит.

Для получения мартенситной структуры доэвтектоидные стали(до 0,8% C) нагревают до температур, лежащих выше точки Ас3 на 30-50°C, для заэвтектоидных – на 30-50° выше Ас1.По такой технологии закаливают металлорежущий инструмент и упрочняют изделия, которые в процессе эксплуатации подвергаются трению: шестерни, валы, обоймы, втулки. При нагреве до более низких температур в структуре доэвтектоидных сталей наряду с мартенситом сохраняется более мягкий феррит, снижающий твердость металла и ухудшающий его механические характеристики после отпуска. Такая закалка стали называется неполной и в большинстве случаев является браком. Но она может использоваться в некоторых случаях во избежание появления трещин.

Закалка без полиморфного превращения

Закалка без полиморфного превращения протекает в цветных металлах и сплавах, имеющих ограниченную растворимость вторичных фаз при обычных температурах, в которых при высоких температурах не происходят полиморфные превращения. При повышении температур выше линии солидус (это линия, ниже которой находится только твердая фаза) вторичные фазы полностью растворяются. При быстром охлаждении вторичные фазы не выделяются, поскольку для этого необходимо определенное время. После такой термообработки цветной сплав является термодинамически неустойчивым, поэтому со временем он начинает распадаться с постепенным выделением вторичной фазы. Такой процесс распада, происходящий в естественных условиях, называется естественным старением, а при нагреве – искусственным старением. В результате старения получают равновесную структуру. Характеристики материала зависят от выбранного режима процесса.

Закалка цветных металлов и сплавов, в отличие от углеродистых сталей, часто не приводит к повышению прочности. Сплавы на основе меди, например, после такой ТО часто становятся более пластичными. Для таких материалов обычно используют отпуск, благодаря которому снимаются напряжения после литья, прокатки, штамповки, ковки или прессования.

Расчет продолжительности закалки

Раз вы говорите о программе, то буду изясняться четко (не как для термистов)

1. Чем выше температура в печи, тем выше скорость нагрева (закон стефана-больцмана излучение черного тела) =>

а) то есть ты добавил температуру закалки — будь добр сократи время выдержки (формула экспонента составь диффур и подставь граничные условия)

б) с увеличением легированности стали карбидообразующими элементами (например хром) затрудняется распад этих самых карбидов, для того и повышают температуру закалки …. таким образом в итоге легированная сталь находится в печи то же самое время что и простая, но температура выше.

2. Условно считай время 1мин на 1мм сечения, в зависимости от того как у тебя будут лежать детали в печи — вводи поправочные коэффициенты (если детали в куче, то общая площадь поверхности на одну деталь — сокращается, по сравнению с раположением одной детали). Не забудь учесть теплопередачу от пода печи к детали (скорость передачи энергии этим путем раза в 3-4 больше чем от излучения).

ведь если недодержим деталь, во-первых получим ее не до конца закаленную , во-вторых, за счет тепла из внутренних слоев получим самоотпуск

1. Засеки время остывания детали определенного (лучше получите 2 точки) в воде, а потом умноже это на 10-15 и получишь время выравнивания температуры. А потом апроксимируй их на экспоненту.

2. Самоотпуск можно получить при длительном нахождении разогретой детали в среде, имеющей медленную скорость охлаждения для данной стали.

не смотри на изолтермический распад аустенита, в реальной жизни он тебе ни к чему (потому как при непрерывном охлаждении диаграмма отодвигается вправо, причем значительно, особенно в области мартенситных температур).

Таким образом, стоит ли пользоваться расчетом скорости охлаждения и из него выводить время закалки, но тогда опять вопрос — в разных диапазонах охлаждение идет с различной скоростью (т.е. он не константа в течение процесса закалки), особенно для масел и полимеров.

Пишите в программу уравнение вида Т=Тo*exp(-qt) … и подбирай коэффициенты в зависимости от закалочной среды ( что входит в коэффициент q вы можете узнать в разделе термодинамика, решив при этом диффур и получив уравнение того же вида).

Про температуры отпуска подбери такое уравнение:

HRС(T) = HRC(з)*exp(-kT) …. температура в кельвинах (подбери граничные условия — и вперед). Но не забывай про одно, что для сталей отклонение +/-10 градусов вызавает изменение во времени отпуска на 1-3 часа.

Способы закалки стали

Способ закалки выбирают в зависимости от химического состава стали и запланированных свойств.

Закаливание с охлаждением в одной среде

Скорость охлаждения стали после закалки зависит от среды, в которой оно проводится. Самую высокую скорость обеспечивает охлаждение в воде. Такой способ используется для среднеуглеродистых низколегированных сталей и некоторых марок коррозионностойких сталей. При содержании углерода более 0,5% C и высоком легировании воду в качестве охлаждающей среды не применяют, поскольку такие сплавы покрываются трещинами или полностью разрушаются.

Прерывистая закалка в двух охлаждающих средах

Ступенчатую закалку применяют для деталей, изготовленных из сложнолегированных сталей. Крупногабаритные детали после нагрева на несколько минут окунают в воду, а затем охлаждают в масле до +320…300°C, после чего оставляют на воздухе. При охлаждении в масле до комнатных температур твердость изделия значительно снижается.

Изотермическая ТО

Закалка высокоуглеродистых марок – сложный процесс, состоящий из нормализации с последующим нагревом до температуры закалки. Нагретые детали опускают в ванну с селитрой, нагретой до температур +320…+350°C, выдерживают.

Светлая ТО

Такая термообработка применяется для высоколегированных сталей и заключается в их нагреве в среде инертных газов или в вакууме, что обеспечивает светлую поверхность металла. Светлая закалка используется в серийном производстве типовых изделий.

Термообработка с самоотпуском

При высокой скорости охлаждения внутри детали остается тепло, которое при постепенном выходе снимает напряжения внутренней структуры. Этот процесс можно доверить только специалистам, которые могут точно рассчитать время нахождения изделия в охлаждающей среде.

Струйная

Охлаждение осуществляют интенсивной струей воды. Такой процесс применяется при необходимости закаливания отдельных частей изделий.

Закалка стали

Требуется закалка деталей (стали) ? НТУ ХПИ выполняет все виды работ по закалке металла. В головах наших заказчиков во всём мире мы ассоциируемся с термином «качество»

Далее более подробно изложено о самой закалке стали, её видах, закалочных средах и других её особенностях.

В зависимости от исходного химического состава и температуры сплавы на основе системы железо – углерод могут находиться в различном фазовом и структурном состоянии (рис 1).

При этом к сталям относятся сплавы железо – углерод содержащие от 0 до 2,14 % углерода. В зависимости от равновесной структуры, определяемой содержанием углерода, стали подразделяются на доэвтектоидные, эвтектоидные и заэвтектоидные. К доэвтектоидным относят стали содержащие от 0 до 0,78 % углерода. К эвтектоидным – стали содержащие около 0,78% углерода. И к заэвтектоидным – стали содержащие от 0,78 до 2,14 % углерода.

Рис 1. Диаграмма состояния железо – углерод (железо – цементит).

Закалкой называется нагрев стали на 30 – 50 ºС выше температуры аустенизации (Ас3) для доэвтектоидных и эвтектоидных сталей, или выше температуры полного растворения перлита (Ас1) для заэвтектоидных сталей, выдержке при данной температуре для завершения фазовых превращений и последующем охлаждении со скоростью выше критической (рис 2).

Рис 2. Термокинетическая диаграмма превращения переохлажденного аустенита, где Vк – критическая скорость закалки, а Vз – оптимальная скорость закалки.

Для углеродистых сталей критическая скорость охлаждения велика (400-1200 ºС/сек), поэтому охлаждение обычно проводят в воде или водных растворах. Для легированных сталей, аустенит которых более устойчив, критическая скорость охлаждения меньше, поэтому их охлаждают в масле и в других средах.

В большинстве случаев закалка металла не является окончательной операцией термической обработки. Чтобы уменьшить остаточные напряжения и хрупкость, вызванные закалкой, сталь после закалки подвергают отпуску. Достаточно часто при отпуске можно подкорректировать объемные изменения, вызванные закалкой, и стабилизировать размеры, что важно для прецизионных стальных деталей.

Инструментальную сталь, как правило, закаливают для повышения твердости, прочности и износостойкости. Конструкционную же сталь закаливают в первую очередь для повышения прочности, при сохранении высокой вязкости и пластичности. Некоторые виды сталей закаливают исключительно для придания высокой износостойкости.

Температура нагрева стали под закалку

Выбор температуры нагрева для закалки деталей, в основном, определяется их химическим составом и конкретной целью закалки. Как уже упоминалось выше, доэвтектоидные и эвтектоидные стали нагревают до температуры на 30 – 50 ºС выше температуры аустенизации (Ас3). При этом исходная структура (перлит + феррит) превращается в аустенит, который при последующем резком охлаждении превращается в мартенсит. Заэвтектоидные стали обычно нагревают на 40 – 80 ºС выше температуры полного растворения перлита (Ас1). В результате образуется аустенит и сохраняется определенное количество нерастворенного цементита (карбидов). После охлаждения такая сталь состоит из мартенсита и нерастворенных карбидов, и характеризуется повышенной твердостью. Верхний предел температуры при нагреве под закалку заэвтектоидной стали принято ограничивать, поскольку чрезмерное увеличение температуры вызывает рост зерна, охрупчивание закаленной стали, и усиливает коробление (рис 3).

Рис 3. Фрагмент диаграммы состояния железо – углерод (нанесены типичные температуры нагрева под закалку).

В то же время для многих видов сталей температура нагрева под закалку намного превышает указанные выше значения, что вызвано специальным легированием. Например, нагрев под закалку высокохромистых инструментальных и нержавеющих сталей содержащих 11 – 14 % Cr ведут до температур на 150 – 250 ºС выше температуры аустенизации (Ас3). В противном случае в их структуре останется слишком большое количество не растворившихся карбидов, что приведет к снижению твердости и прочности закаленной стали.

Продолжительность нагрева при закалке стали

Продолжительность нагрева стали под закалку определяется следующими факторами:

1. Необходимо обеспечить прогрев изделия по всему сечению;

2. Должно быть учтено время необходимое для завершения фазовых превращений;

3. Длительность нагрева не должна быть излишне большой, чтобы предотвратить рост зерна и поверхностное обезуглероживание.

Продолжительность нагрева в пламенных и электропечах обычно вычисляют из расчета 1 мин на 1 мм сечения детали плюс время, необходимое для завершения фазовых превращений. Прецизионные детали и детали сложных форм при нагреве под закалку рекомендуется предварительно подогревать в печи при температуре 400 – 600 ºС для уменьшения коробления.

Охлаждающие среды для закалки стали

Охлаждение при закалке стали должно обеспечивать получение мартенсита в заданном сечении детали, и не должно при этом вызывать дефекты: коробление, трещины, излишне высокие остаточные напряжения и т.п.

Высокая скорость охлаждения при закалке предпочтительна в температурном интервале от точки аустенизации вплоть до начала мартенситного превращения (Ас3 – Мн, или Ас1 – Мн). Это позволяет подавить промежуточный перлитный распад переохлажденного аустенита и обеспечить наиболее полное мартенситное превращение. Однако когда мартенситное превращение уже пошло (Мн – Мк) предпочтительной является пониженная скорость охлаждения. Сохранение высокой скорости охлаждения в температурном интервале мартенситного превращения нежелательно, поскольку может привести к росту остаточных напряжений вплоть до растрескивания изделий.

Следует отметить, что слишком медленное охлаждение (медленнее 50 – 100 ºС/час) в интервале температур (Мн – Мк) также бывает нежелательно, поскольку может вызвать частичный отпуск мартенсита и увеличение количества остаточного аустенита в закаленной стали. В результате, твердость такой стали окажется пониженной.

В качестве охлаждающих сред для закалки стали обычно используют кипящие жидкости: воду, водные растворы солей и щелочей, керосин, и наиболее часто – закалочные минеральные масла. При закалке в этих средах различают три основных периода охлаждения (рис 4):

Рис 4. Скорость охлаждения стали в различных охлаждающих средах при закалке: 1 – вода; 2 – 10%-ный водный раствор NaОН; 3 – 10%-ный водный раствор NaCl; 4 – минеральное масло.

1. Пленочное охлаждение: на поверхности закаливаемой детали образуется так называемая “паровая рубашка”. В этот период скорость охлаждения невелика из-за отсутствия стабильного контакта охлаждающей среды с поверхностью закаливаемой детали.

2. Пузырьковое кипение: при разрушении “паровой рубашки” обеспечивается прямой контакт поверхности закаливаемой детали с охлаждающей средой и наступает наиболее интенсивный отвод теплоты.

3. Конвективный теплообмен: при завершении кипения охлаждающей среды на поверхности закаливаемой детали наступает стадия конвективного теплообмена, при которой подогретые слои жидкости, расширяясь, устремляются в верхнюю зону закалочного бака, а на их место поступает охлаждающая среда из более холодных центральных и нижних зон. В этот период теплоотвод характеризуется наименьшей интенсивностью.

Относительная скорость охлаждения для различных закалочных сред и типичный температурный интервал в режиме пузырькового кипения приведены в таблице 1.

Таблица 1. Относительная охлаждающая способность закалочных сред.

Охлаждающая среда и ее исходная температура. Температура пузырькового кипения ºС. Относительная интенсивность охлаждения в интервале пузырькового кипения.
Вода 20 ºС 400 – 100 1,0
Вода 40 ºС 350 – 100 0,7
Вода 80 ºС 250 – 100 0,2
10%-ный водный раствор NaCl, 20 ºС 650 – 100 3,0
10%-ный водный раствор NaОН, 20 ºС 650 – 100 2,0
Минеральное масло, 20 – 200 ºС 500 – 250 0,3

Для закалки углеродистой и отдельных видов низколегированных сталей чаще всего применяют воду и водные растворы NaCl и NaОН, поскольку устойчивость переохлажденного аустенита у этих сталей невелика.

Вода как закалочная среда имеет определенные недостатки:

1. Слишком высокая скорость охлаждения в области температур мартенситного превращения, что часто становится причиной дефектов и выбраковки части закаленных деталей.

2. С повышением температуры воды ее закалочная способность стремительно снижается, в связи с чем необходим строгий контроль за температурой воды в закалочном баке.

Для закалки легированных сталей, устойчивость переохлажденного аустенита у которых высока, наибольшее распространение в качестве охлаждающей среды получили минеральные масла.

Минеральные масла как закалочная среда имеют определенные преимущества:

1. Постоянство закаливающей способности в широком интервале температур (40 – 150 ºС, и даже 20 – 200 ºС).

2. Невысокая скорость охлаждения в температурном интервале мартенситного превращения, что позволяет полностью избежать или свести к минимуму появление закалочных дефектов.

Следует отметить, что несмотря на стабильность охлаждающей способности в широком интервале температур, все-же рекомендуется поддерживать температуру закалочного масла в диапазоне 60 – 90 ºС, когда его вязкость минимальна.

Закаливаемость и прокаливаемость стали

Закаливаемостью называют способность стали увеличивать твердость при закалке. Основным фактором влияющим на закаливаемость стали является содержание углерода (чем больше в мартенсите углерода, тем выше твердость). Остальные легирующие элементы изменяют закаливаемость незначительно.

Прокаливаемость – это способность стали получать закаленный слой с мартенситной структурой и высокой твердостью на определенную глубину. Прокаливаемость, косвенным индикатором которой является критическая скорость охлаждения, сильнее всего зависит от легирования (добавки Mn, Cr, Ni, Mo, W, V и т.д.), и незначительно зависит от содержания углерода (рис 5, 7).

Прокаливаемость стали в ограниченных сечениях можно определить по распределению твердости по сечению образцов (рис 5).

В общем случае прокаливаемость определяют методом торцовой закалки. Цилиндрический образец стандартных размеров и формы (рис 6), нагретый под закалку по стандартному режиму, охлаждают с торца водой на специальной установке. Когда охлаждение образца завершено, измеряют твердость по его длине (высоте). Поскольку скорость охлаждения по мере удаления от торца убывает, то закономерно уменьшается и твердость. Результаты измерений отображают на графике в координатах: твердость – расстояние от торца.

Рис 5. Распределение твердости по сечению закаленной стали в зависимости от состава: а) – сталь с 0,4 % С; б) – сталь с 0,4 % С, 0,85 % Mn и 1,0 % Cr; в) – сталь с 0,4 % С, 3,5 % Ni и 1,5 % Cr. Цифрой 1 показана твердость полумартенситной зоны (50 % мартенсита) в HRC.

Прокаливаемость стали, даже одной и той же марки, может изменяться в значительных пределах из-за неоднородности химического состава, размера и формы детали, величины зерна, предыстории термической (и термомеханической) обработки и других технологических факторов. Поэтому прокаливаемость каждой марки стали описывают не кривой, а так называемой полосой прокаливаемости, которая точнее отражает прокаливаемость стали в изделии.

Рис 6. Определение прокаливаемости методом торцовой закалки: а) – изменение твердости по длине образца; б) – схема торцовой закалки; 1) – охлаждение в масле; 2) – охлаждение в воде.

Рис 7. Полосы прокаливаемости сталей различного состава. Цифрой 1 указана твердость полумартенситной зоны (50 % мартенсита) в HRC.

Типичные полосы прокаливаемости для углеродистой и легированных конструкционных сталей содержащих 0,4 % С приведены на рис 7. Рис 7 также наглядно демонстрирует влияние легирующих элементов на прокаливаемость стали.

Основные виды объемной закалки

Непрерывной закалкой называют закалку в одном охладителе. Это самый распространенный вид закалки подходящий для большинства марок сталей и деталей относительно простой геометрии. Все остальные виды закалки, как правило, применяются для деталей сложной формы, деталей с переменными сечениями, а также для случаев, когда частично можно пожертвовать твердостью закаленной детали ради достижения максимальной конструктивной прочности и вязкости.

Прерывистой закалкой называют последовательную закалку в двух охлаждающих средах. Наиболее часто применяемый вид прерывистой закалки заключается в предварительном охлаждении в воде (или водных растворах) до температуры несколько выше Мн, а затем в быстром переносе в менее интенсивный охладитель (чаще всего в масло), в котором деталь остывает окончательно. Второй, также распространенный вид прерывистой закалки, это прерывистая закалка в масле с последующим охлаждением на воздухе в интервале (Мн – Мк). Этот вид закалки часто применяется для высоколегированных высокопрочных сталей эксплуатируемых в сложнонапряженном состоянии. Основным достоинством прерывистой закалки является уменьшение внутренних напряжений и увеличение конструктивной прочности закаленной стали.

При ступенчатой закалке сталь подвергают охлаждению, как только она нагревается до заданной температуры, и исключают дополнительную выдержку для завершения фазовых превращений. Такой вид закалки подходит только для нелегированных и некоторых низколегированных сталей, фазовые превращения в которых протекают с высокой скоростью. Для остальных классов сталей такая закалка не применима. Выигрыш, которого позволяет достичь ступенчатая закалка, заключается в уменьшении коробления и фазовых напряжений.

Неполная изотермическая закалка

Неполная изотермическая закалка заключается в быстром охлаждении до температуры чуть выше Мн, а затем в кратковременной (5 – 15 мин) выдержке при этой температуре, с последующим спокойным охлаждением, как правило, проводимым на воздухе. Температура промежуточной выдержки при неполной изотермической закалке в основном зависит от марки стали и температуры Мн, и обычно лежит в пределах 225 – 360 ºС. Неполная изотермическая закалка частично стабилизирует переохлажденный аустенит, в результате чего твердость закаленной стали уменьшается, а вязкость – возрастает.

Полная изотермическая закалка

Полная изотермическая закалка отличается от неполной тем, что выдержка при температуре чуть выше Мн, значительно более длительная (45 – 60 мин и более). Температура, при которой производится промежуточная изотермическая выдержка также чуть выше (275 – 400 ºС) и граничит с областью бейнитного превращения переохлажденного аустенита. Далее следует спокойное окончательное охлаждение. Структура стали подвергнутой полной изотермической закалке преимущественно состоит из бейнита и остаточного аустенита. На окончательном этапе охлаждения может образоваться мартенсит, количество которого невелико. В результате полной изотермической закалки можно получить максимальные значения конструктивной прочности и вязкости закаленной стали. Однако твердость при полной изотермической закалке обычно не превышает 60 – 70 % от максимально достижимой для стали данной марки.

Так же в последнее время очень популярны темы: светлая закалка, закалка в вакууме, закалка в защитных газах, все эти методы применяют для защиты поверхности деталей от окисления при закалке. Также популярна закалка ножей. Всё это Вы можете выполнить у нас без коробления и поводки с надлежащими твёрдостью, прочностью и вязкостью.

Понравилась статья? Расскажите друзьям.
Общайтесь с нами:

Оборудование для проведения закалки

Оборудование разделяется на две основные группы – установки для нагрева и ванны для охлаждения. На современных предприятиях для получения закалочных температур используются:

  • муфельные термические печи;
  • оборудование для индукционного нагрева;
  • установки для нагрева в расплавах;
  • аппараты лазерного нагрева;
  • газоплазменные устройства.

Первые три типа установок востребованы для осуществления объемной закалки, три последние – для поверхностного процесса.

Закалочное оборудование – это стальные емкости, графитовые тигли, печи, в которых содержатся расплавленные металлы или соли. Закалочные ванны для жидких сред оборудованы системами обогрева и охлаждения. В их конструкции могут быть предусмотрены специальные мешалки для перемешивания жидких сред и устранения паровой рубашки.

Технология закалочного процесса

Нагрев и выдержка

Температура нагрева стали при закалке зависит от ее химического состава. В общем случае наблюдается закономерность – чем меньше процентное содержание углерода, тем выше должна быть температура нагрева. Понижение температуры нагрева приводит к тому, что нужная структура не успевает сформироваться. Последствия перегрева:

  • обезуглероживание;
  • окисление поверхности;
  • увеличение внутреннего напряжения;
  • изменение структурных составляющих.

Изделия сложных форм предварительно подогревают. Для этого их два-три раза опускают на несколько минут в соляные ванны или держат короткое время в печах, нагретых до температур +400…500°C. Период выдержки определяется габаритами изделия и их количеством в печи. Все части изделия должны прогреваться равномерно.

Таблица температур закалки различных марок стали

Марка Температура, °C Марка Температура, °C
15Г 800 50Г2 805
65Г 815 40ХГ 870
15Х, 20Х 800 3Х13 1050
30Х, 35Х 850 35ХГС 870
40Х, 45Х 840 30ХГСА 900
50Х 830

Температуру нагрева измеряют с помощью пирометров – контактных и бесконтактных, инфракрасных приборов.

Охлаждение

Для охлаждения используется вода – чистая или с растворенными в ней солями, щелочные растворы. Для легированных сталей используется обдув или охлаждение в минмаслах. В изотермических и ступенчатых процессах для охлаждения используются расплавы солей, щелочей и металлов. Такие среды могут чередоваться между собой.

Отпуск

В зависимости от необходимой температуры отпуск осуществляется в масляных, щелочных или селитровых ваннах, печах с принудительной циркуляцией воздушных потоков, горячем песке.

Низкий отпуск, проводимый при +150…+200°C,служит для устранения внутренних напряжений, некоторого повышения пластичности и вязкости без существенного ухудшения твердости. Низкий отпуск востребован для измерительного и металлообрабатывающего инструмента, других деталей, которые должны сочетать твердость и устойчивость к износу.

Для быстрорежущих сталей отпуск осуществляют при температурах +550…580°C. Такую процедуру называют вторичным отвердением, поскольку она приводит к дополнительному росту твердости.

Режимы термообработки стали

Режим закалки стали зависит от содержания углерода, а также от конфигурации детали. Соответственно температурные диапазоны и закаляющие среды будут разные для каждого вида стали. Ниже в таблице представлены более 30 самых используемых видов стали.

№ п/п Марка стали Твёрдость (HRCэ) Температ. закалки, град.С Температ. отпуска, град.С Температ. зак. ТВЧ, град.С Температ. цемент., град.С Температ. отжига, град.С Закал. среда Прим.
1 2 3 4 5 6 7 8 9 10
1 Сталь 20 57…63 790…820 160…200 920…950 Вода
2 Сталь 35 30…34 830…840 490…510 Вода
33…35 450…500
42…48 180…200 860…880
3 Сталь 45 20…25 820…840 550…600 Вода
20…28 550…580
24…28 500…550
30…34 490…520
42…51 180…220 Сеч. до 40 мм
49…57 200…220 840…880
670 Азотирование
10 Сталь 7ХГ2ВМ = 57 840…860 460…520 Масло Сеч. до 100 мм
42…46 Сеч. 100..200 мм
39…43 Сеч. 200..300 мм
37…42 Сеч. 300..500 мм
НV >= 450 Азотирование. Сеч. св. 70 мм
25 Сталь 30ХГСА 19…27 890…910 660…680 Масло
27…34 580…600
34…39 500…540
«— 770…790 С печью до 650
26 Сталь 12Х18Н9Т 6 мм вода
29 Сталь 20Х13 27…35 1050 550…600 Воздух
43,5…50,5 200
30 Сталь 40Х13 49,5…56 1000…1050 200…300 Масло
  • Общее время нагрева (время нагрева и выдержки) деталей при закалке берётся из расчёта 1 минута на 1 мм наименьшего размера наибольшего сечения. В соляных ваннах — 35 секунд на 1 мм наименьшего размера наибольшего сечения.
  • Общее время нагрева (время нагрева и выдержки) деталей при отпуске берётся из расчёта: низкий отпуск (температура 130…240 град.) — 3 минуты на 1 мм наименьшего размера наибольшего сечения, но не менее 30 — 40 минут.
  • средний отпуск (температура 240…450 град.) — 2 — 3 минуты на 1 мм наименьшего размера наибольшего сечения.
  • высокий отпуск (температура 450…700 град. — 2 минуты на 1 мм наименьшего размера наибольшего сечения.
  • Окончательный контроль термической обработки деталей вести по фактической твёрдости.

    Возможные дефекты после закалки

    Нагрев, выдержку, охлаждение и отпуск стали осуществляют в соответствии с технологическими картами, разработанными специалистами. Нарушение разработанного и утвержденного техпроцесса и/или неоднородность структуры заготовки могут стать причиной появления различных дефектов. Среди них:

    • Неравномерный нагрев и/или охлаждение. Приводят к деформациям и образованию трещин, неоднородному составу и неоднородным механическим характеристикам.
    • Пережог. Возникает из-за проникновения кислородных молекул в металлическую поверхность. В результате образуются оксиды, изменяющие рабочие характеристики поверхностного слоя. Этот дефект возникает из-за выгорания из стали углерода, вызванного избыточным количеством кислорода в печи.
    • Попадание в масляную охлаждающую ванну воды. Это нарушение техпроцесса приводит к появлению трещин на изделии.

    Все перечисленные выше дефекты являются неисправимыми.

    Источник

  • Читайте также:  Как заточить сталь 40х13 55 hrc
    Adblock
    detector