Меню

Перевод стали в медь

Приложение к ТЦ № 6. Выбор защитных проводников по условию эквивалентной проводимости

В различных нормативных документах, таких как ГОСТ Р 50571.10 (МЭК 364-5-54-80), ГОСТ Р 51321.1-2000 (МЭК 60439-1-92), ГОСТ Р 51732-2001, глава 1.7 ПУЭ, а также в приведенном выше цирку­ляре, имеются таблицы по выбору сечения защитных проводников в соответствии с сечением фазных проводников. Все таблицы при­менимы в случае, когда защитные проводники выполнены из того же металла, что и фазные. Если защитный проводник выполнен из другого металла, нежели фазный, то его сечение должно выбирать­ся из условия обеспечения так называемой эквивалентной прово­димости. В перечисленных документах нет расшифровки этого понятия, что приводит к серьезным ошибкам, так как проектиров­щики электроустановок и разработчики НКУ пересчет ведут по удельному сопротивлению материала проводника. При пересчете сечения по эквивалентной проводимости кроме величины удельно­го сопротивления должны также учитываться начальная и конеч­ная температура проводника и изоляции, способ прокладки и ха­рактеристики окружающей среды. Ниже приводится методика выбора защитных проводников по условию обеспечения эквива­лентной проводимости в соответствии с указаниями последней редакции стандарта МЭК IEC 60364-5-54 2002 г. и ШС 60364-4-43 2001 г. Действующие ГОСТ Р 50571.10 и ГОСТ Р 50571.5 подго­товлены по стандартам МЭК 1977 и 1980 гг. соответственно и значительно устарели. Таблицы с характеристиками проводни­ков, приведенные в главе 1.7 ПУЭ седьмого издания, взяты из ГОСТ Р 50571.5.

Выбор сечения защитных проводников производится в сле­дующей последовательности:

определяется сечение Sf защитного проводника по отноше­нию к фазному, при условии, что защитный проводник выполнен из того же материала, что и фазный;

определяется сечение защитного проводника, выполненно­го из материала, отличного от материала фазного проводника, по формуле S2 S, * (kj/kz), где к, — величина коэффициента к для фаз­ного проводника, рассчитанного по формуле (см. ниже) в соответст­вие с таблицей А.54.1 МЭК 60364-5-54 2002 г. или взятого из таблицы43А МЭК 60364-4-43 2001 г. в соответствии с материалом проводни­ка и изоляции;

к2 величина коэффициента к для защитного проводника, вы­бранного из таблиц А.54.2-А.54.6 МЭК 60363-5-54 в соответствии с условиями применения.

Расчет коэффициента А

i Коэффициент & рассчитывается по следующей формуле:

где Q — объемная теплоемкость материала проводника, Дж/С мм ; Р — величина, обратная температурному коэффициенту про­водника при 0 °С; р — удельное электрическое сопротивление проводника при

0 °С, Ом-мм; 0, — начальная температура проводника, °С;

— конечная температура, °С.

Таблица А.54.1 Величины параметров для различных материалов

Источник статьи: http://www.megaomm.ru/prilozhenie-k-tc-6-vyibor-zashhitnyix-provodnikov-po-usloviyu-ekvivalentnoj-provodimosti.html

Бесплатный калькулятор металлопроката онлайн

Код для вставки калькулятора металла на сайт

Калькулятор металла онлайн

Когда необходимо купить металлопрокат, необходимо знать каким транспортом его будет удобнее перевозить. От того, какова будет общая масса металлических изделий, зависит тоннажность автомобилей или другого транспорта для доставки. Поэтому возникает вопрос как вычислить массу необходимого количества металлопроката.

Читайте также:  Марка стали для танковой брони

Когда-то решение этого вопроса занимало массу времени даже у высококвалифицированных специалистов. Ведь для выполнения необходимых расчетов нужно было знать теоретическую массу веса различных металлов, формулы для вычисления объема различных прокатных форм и т.д. Такая сложность вычислений требовала поиска новых решений. Таким решением стал калькулятор металлопроката онлайн.

Теперь при составлении любых строительных спецификаций применяется калькулятор металлопроката вместо множества таблиц, формул и кропотливых подсчетов. С помощью нашего сервиса калькулятор металлопроката онлайн можно рассчитать массу таких металлов:
— сталь;
— чугун;
— алюминий;
— бронза;
— латунь;
— магний;
— никель;
— медь;
— олово;
— свинец;
— титан;
— цинк.

Для того, чтобы произвести расчет нужно в выпадающем меню программы Бесплатный калькулятор металлопроката онлайн выбрать тип металла и тип проката. Расчет производится для таких типов проката:
— уголок;
— лист;
— труба;
— круг/проволока/катанка;
— труба квадратная;
— прокат;
— швеллер;
— лента/полоса;
— балка;
— шестигранник.

Для каждого типа металла есть возможность выбора конкретной марки. Например, когда в выпадающем меню «Тип металла» выбрана сталь, то в выпадающем меню «Марка», справа от поля с типом металла, можно выбрать любую из стандартных марок стали. Также в программу внесены все существующие марки металлов, из которых производится металлопрокат.

Далее, выбрав тип проката, тип металла и его марку, остается указать основные параметры самого изделия. В программе наглядно отображается какой именно параметр нужно внести для расчета. К каждому типу металлопроката прилагается графическое изображение его среза с отображением в виде букв названия каждой грани, полочки и т.п. Также изображен сам тип металлопроката. Вы наверняка не спутаете тип «лист» с типом «полоса», или «квадратную трубу» с «квадратом». Для удобства и простоты измерений на графическом изображении среза металлопроката обозначены названия каждой полочки, например, a, b, c. Например, если вы рассчитываете массу алюминиевого уголка, вам нужно указать высоту и ширину его полочек, а также толщину стенки (толщину листа металла). Для расчета массы медной трубы нужно указать ее полный диаметр и толщину стенок. Поля, в которые нужно вносить конкретные размеры, имеют тоже название, что и названия в графическом изображении.

В калькулятор металла эти данные вносятся в миллиметрах. Кроме того, укажите длину конкретного металлоизделия в соответствующем поле, длина указывается в метрах. Теперь остается сделать клик на кнопке «Посчитать» и в поле «Масса» программа выдаст значение массы указанного металлопроката в килограммах, с точностью до грамма.

Для произведения расчета общей массы различных металлических изделий с разными габаритами, выполните расчет для каждого типа изделия отдельно. Затем просто сложите получившиеся результаты – и вы узнаете точную массу всего необходимого вам количества металлопроката.

Читайте также:  Первыми стали вскрывать трупы

Также есть возможность задать необходимую массу металлопроката (например, когда вы знаете, что можете перевезти металл с помощью грузовика с определенной грузоподъемностью) и, зная его основные промеры, определить общую длину изделия.

Источник статьи: http://service-online.su/text/calc/

Особенности физико-химического поведения меди и стали, их учёт при выборе метода сварки этих материалов в конкретных условиях

Сварка меди со сталью является изначально сложной задачей. Применение того или иного технологического приема зависит от конструкции изделий, условий работы свариваемого соединения и требований, предъявляемых к ним.

Влияние особенностей меди на выбор способа её сварки со сталью

На выбор технологии сварки влияют следующие особенности меди :

  1. Высокая теплопроводность затрудняет точечный разогрев.
  2. Быстрая окисляемость провоцирует засорение металла шва, делая его неоднородным и менее прочным.
  3. Медь при расплавлении поглощает большое количество водорода, приводя к образованию в шве дефектов.
  4. Сильная растекаемость расплавленной меди приводит к необходимости вести сварку в нижнем положении с использованием подкладок.
  5. Очень сильно влияет на свариваемость меди качественный и количественный состав примесей, входящих в её состав.

Аргонодуговая сварка

Сваривание происходит при помощи электрической дуги в аргоне, т. е. в инертной среде, при использовании плавящихся или неплавящихся электродов. В качестве неплавящегося чаще всего используют вольфрамовый электрод. Подача присадки производится к зоне дуги извне, в электрическую цепь не подсоединяется. Аргонодуговую сварку обычно применяют для соединения небольших изделий.

Качество сварного соединения зависит от степени проплавления стали и будет более приемлемо при возможно меньшем количестве стали в получившемся шве. Это достигается корректной регулировкой нагрева и контролем плавления обоих металлов: большую температуру дуги концентрируют на меди, а сталь нагревается и оплавляется, благодаря тепловой энергии, поступающей от получившейся сварной ванны.

С учётом этой особенности для сварки меди с толстым железом предварительный прогрев не производят. При этом сварку лучше выполнять на флюсе. Чтобы предотвратить вытекание жидкого металла, при таком подходе используют соответствующие ограничители со стороны меди.

При использовании неплавящегося электрода используется постоянный ток прямой полярности и чистый аргон без примесей. Материал толще 4 мм приваривают после предварительного прогрева до 800°С. Сварку лучше вести, наклоняя электрод к свариваемому участку на 85-90°, при этом присадочную проволоку нужно наклонять на 15-20° , а вылет электрода поддерживать на 5-10 мм. Также очень важно правильно выбрать присадочный материал. Обычно используют различные сплавы меди.

Сварка угольным электродом

Данный вид сварки не гарантирует качественное соединение, поэтому угольные электроды оправданно использовать при малой толщине меди. На толщине более 15 мм целесообразнее применение графитовых электродов.

Работа выполняется постоянным током прямой полярности и ведётся длинной дугой с целью избежать нежелательного влияния на качество выделяющегося оксида углерода. Поддерживают расстояние от присадочного материала до ванны 5 мм, не погружая в ванну, под углом 30° к изделию. Угол электрода к рабочей поверхности в 70-90°.

Обязательно применение присадочного материала с фосфором, а часто и флюс. Слой флюса наносят на предварительно обработанные жидким стеклом свариваемые кромки и хорошо просушивают.

Читайте также:  Читать мангу мои невесты из другого мира стали сверхсильными

Детали из совсем тонкой меди приваривают угольной дугой. При необходимости сварить более объёмные детали также допустимо использовать угольный электрод, но обязательно использование присадочного материала, в состав которого входят борный ангидрид, борная кислота, бура. Этим же составом можно обмазывать электроды.

Газовая сварка

При ремонтных работах и при изготовлении тонкостенных изделий из стали и цветных сплавов широко используется газовая сварка. Газовой сваркой выполняются такие же виды сварных соединений, как и электродуговой сваркой. Особенностью процесса является то, что под воздействием струи кислорода газ нагревается до температуры, достаточной для плавки.

Этапы газовой сварки меди:

  1. Подготовительный этап. Зачистка кромок свариваемых деталей, совмещение компонентов изделия и фиксация деталей прихватками. Длина прихваток и их расположение определяется толщиной меди – от 4-6 мм прихватки располагаются на расстоянии 70–110 мм друг от друга, а при толщине меди до 15-25 мм с расстоянием между ними – до 450–550 мм.
  2. Правильная установка компонентов изготавливаемой конструкции. Для качественной сварки установка происходит с небольшим наклоном к горизонтали (порядка 15 градусов).
  3. Выбор режима сварки. Режим определяется толщиной свариваемых деталей. При толщине 3–4 мм выбирается мощность 150–175 л/ч на 1 мм толщины, а при толщине от 8 до 10 мм мощность горелки выбирается из расчета 175–230 л/ч на 1 мм.
  4. Процесс сваривания.
  5. Заключительный этап. Состоит из проковки шва и очистки его от остатков флюса. Делается это азотной или серной кислотой с последующим удалением остатков кислоты водой.

Другие виды сварки

Рассмотрим менее распространённые виды сварки:

  1. Сварка трением позволяет получить сварные соединения с прочностью на уровне основного материала.
  2. Сварка взрывом дает соединение высокой прочности. Метод применяется для получения слоистых листов и лент.
  3. Сварка прокаткой применяется для получения биметаллических листов и лент сталь + медь. Обычно соединение не уступает по прочности основному металлу.
  4. Контактная сварка обеспечивает интенсивность тепловыделения в зоне сварки и высокие градиенты температур.
  5. Ультразвуковая сварка деталей малых толщин. Колебания подводятся со стороны меди.
  6. Диффузионная сварка. Обеспечивает получение термостойких, вибропрочных сварных соединений при сохранении высокой точности геометрических размеров и форм изделий.
  7. Сварка плавлением. На сталь предварительно наплавляется слой другого металла или применяется промежуточная вставка.
  8. Электронно-лучевая сварка. Очень перспективная, но пока малораспространённая методика. Это относительно безопасный и экологически чистый метод, почти не подвергающий опасности здоровье сварщика.

Источник статьи: http://elsvarkin.ru/texnologiya/med-i-stal/

Adblock
detector