Меню

Марки стали для аммиака

Марки стали для изготовления резервуаров и емкостей

Все конструктивные элементы резервуаров и емкостей разделяются на 3 группы:

  • А и Б — основные конструкции:
    • Группа А: стенка, привариваемые к стенке листы днища или кольцевые окрайки, обечайки, фланцы и крышки (заглушки) люков и патрубков в стенке, привариваемые к стенке усиливающие или распределительные накладки, кольца жесткости, опорные кольца стационарных крыш.
    • Группа Б1 — каркас стационарных крыш (включая фасонки), бескаркасные крыши;
    • Группа Б2 — центральная часть днища, анкерные крепления, настил стационарных крыш, плавающие крыши и понтоны, обечайки, фланцы и крышки (заглушки) люков и патрубков в крыше.
  • В — вспомогательные конструкции:
    • Группа В: лестницы, площадки, ограждения, переходы (за исключением распределительных накладок, привариваемых к стенке).

В государственных стандартах, регламентирующих проектирование и изготовление вертикальных и горизонтальных емкостей, указывается возможность применения тех или иных марок сталей для основных и вспомогательных конструкций.

Для подбора конкретной марки стали для изготовления резервуаров, инженеры-проектировщики проводят необходимые расчеты и анализ условий эксплуатации. Так, основными параметрами для выбора определенной марки стали являются:

  • расчетное давление;
  • минимальная расчетная температура;
  • максимальная расчетная температура;
  • коррозионная активность рабочей среды.

Для сталей наиболее релевантными характеристиками являются:

  • минимальный предел текучести — этим показателем называют напряжение, при котором начинает развиваться пластическая деформация. Предел текучести относится к характеристикам прочности и устанавливает границу между упругой и упруго-пластической зонами деформирования. Предел текучести металла измеряется в кг/мм 2 или H/м 2 . На значение предела текучести металла влияют самые разные факторов, например: толщина образца, режим термообработки, наличие тех или иных примесей и легирующих элементов, микроструктура, тип и дефекты кристаллической решётки и др.
  • расчетная температура металла — этот показатель принимают как наиболее минимальное значение из двух следующих значений:
    • минимальная температура складируемого продукта;
    • температура наиболее холодных суток для данной местности (минимальная среднесуточная температура), повышенная на 5 °С.
  • ударная вязкость — способность металла в процессе деформации поглощать механическую энергию, величина которой ведёт к разрушениям. Испытание проводится до момента разрушения или разрыва опытного образца и выражается в кДж/м 2 или в Дж/см 2 . Обозначают ударную вязкость металлов буквами КС. В конце есть ещё третий символ, который указывает на вид надреза: V – является острым, U – имеет радиус закругления, Т – трещина.
  • коррозионная стойкость материала — способность материалов сопротивляться коррозионному воздействию внешней среды (особенно это важно в резервуарах);
  • пластичность и др.

Для конструктивных элементов различных групп применяют различные стали:

  • Группа А — основные конструкции — применяется только спокойная (полностью раскисленная) сталь. Полученная в результате раскисления сталь называется спокойной. Содержание кремния в спокойной стали не менее 0,12%, а наличие неметаллических включений и шлаков минимально. Слитки спокойных сталей имеют плотную однородную структуру, а соответственно и улучшенные показатели по механическим свойствам. Спокойная сталь отлично подходит для сваривания, а также обладает лучшей сопротивляемостью к ударным нагрузкам. Является более однородной. Она подходит для возведении опорных металлоконструкции (благодаря ее стойкости к хрупкому разрушению), которые подвергаются сильным нагрузкам.
  • Группа Б — применяется спокойная или полуспокойная сталь. Промежуточной по качественным показателям — является полуспокойная сталь. Она является полураскисленной и кристаллизуется без кипения, выделяя при этом достаточное количество газа и имеет меньшее количество пузырьков, чем кипящая сталь. Поэтому, полуспокойная сталь имеет средние показатели качества (максимально приближенные к спокойной), и иногда заменяет спокойную. Стоимость полуспокойной стали немного ниже спокойной, а выход качественного проката из таких слитков на 8 — 10% лучше. Показатели качества полуспокойной стали ближе к спокойной.
  • Группа В — наряду с вышеперечисленными сталями с учетом температурных условий эксплуатации допускается применение кипящей стали. Кипящая сталь является не полностью раскисленой. Во время разливки в изложницы она кипит из-за обильного выделения газа, поэтому она является наиболее загрязнена газами и неоднородной. Т.е механические свойства по слитку могут отличаться, поскольку распределение химических элементов по слитку не равномерно. Она довольно хрупкая, имеет плохие показатели свариваемости и наиболее подвержена коррозии.
Читайте также:  Сталь эи 968 характеристики

Исходя из нормативной базы по производству резервуаров и емкостей, можно привести следующие итоги:

  • горизонтальные резервуары (по ГОСТ 17032-2010) должны изготавливаться из углеродистой полностью раскисленной стали (основные металлоконструкции) и углеродистой полуспокойной или кипящей стали (вспомогательные конструкции)
  • вертикальные резервуары (по ГОСТ 31385-2008 и СТО 0048-2005) должны изготавливаться из спокойных низкоуглеродистых и низколегированных сталей, для вспомогательных конструкций возможно применение полуспокойных и кипящих сталей
  • сосуды и аппараты (по ГОСТ 52630-2012) могут изготавливаться из углеродистых сталей, коррозионно-стойких и низколегированные, жаростойких и жаропрочных толстолистовой стали

Таблица показывает какие марки стали наиболее часто используются при производстве резервуаров и емкостей

МАРКИРОВКА РАСШИФРОВКА
Ст3сп конструкционная углеродистая обыкновенного качества сталь
09Г2С конструкционная низколегированная сталь
08Х13 сталь коррозионностойкая и жаростойкая ферритного класса.
10Х17Н13М2Т сталь коррозионностойкая аустенитного класса
12Х18Н9 сталь коррозионностойкая и жаростойкая аустенитного класса
08Х18Н10 сталь коррозионностойкая, жаропрочная, аустенитного класса
12Х18Н9Т сталь коррозионностойкая аустенитная класса
08Х18Н10Т сталь коррозионностойкая и жаростойкая аустенитного класса
12Х18Н12Т сталь коррозионностойкая, жаростойкая и жаропрочная аустенитного класса
08Х18Г8Н2Т сталь коррозионностойкая аустенитно-ферритного класса
08Х22Н6Т сталь коррозионностойкая аустенитно-ферритного класса
ВСт3сп сталь конструкционная
10Х14Г14Н4Т сталь конструкционная криогенная аустенитного класса

Для производства резервуаров и емкостей заводы по изготовлению резервуаров используют металлопрокат, отвечающий требованиям государственных стандартов в зависимости от марки стали:

  • ГОСТ 380-2005 «Сталь углеродистая обыкновенного качества. Марки»
  • ГОСТ 1050-2013 «Металлопродукция из нелегированных конструкционных качественных и специальных сталей. Общие технические условия»
  • ГОСТ 4543-71 «Прокат из легированной конструкционной стали. Технические условия»
  • ГОСТ 27772-88 «Прокат для строительных стальных конструкций. Общие технические условия»
  • ГОСТ 5520-79 «Прокат листовой из углеродистой, низколегированной и легированной стали для котлов и сосудов, работающих под давлением. Технические условия»
  • ГОСТ 19281-2014 «Прокат повышенной прочности. Общие технические условия»
  • ГОСТ 14637-89 «Прокат толстолистовой из углеродистой стали обыкновенного качества. Технические условия»
  • ГОСТ 7350-77 «Сталь толстолистовая коррозионно-стойкая, жаростойкая и жаропрочная. Технические условия»
  • ГОСТ 535-2005 «Прокат сортовой и фасонный из стали углеродистой обыкновенного качества. Общие технические условия»
  • ГОСТ 10885-85 «Сталь листовая горячекатаная двухслойная коррозионно-стойкая. Технические условия»

Источник статьи: http://uralneftemash.com/blog/marki-stali/

Выбор материала проточной части

Поверхностное разрушение металла под действием внешней среды называется коррозией.

Чистое железо и низколегированные стали неустойчивы против коррозии в атмосфере, в воде и многих других средах, так как образующаяся пленка окислов недостаточно плотна и не изолирует металл от химического воздействия среды. Некоторые элементы повышают устойчивость стали против коррозии, и таким образом можно подобрать сталь, практически не подвергающуюся разрушению в данной среде.

При введении таких легирующих элементов происходит скачкообразное повышение коррозионной стойкости. К примеру, введение в сталь более 12% хрома (Cr) делает ее коррозионностойкой в атмосфере и во многих других промышленных средах. Стали содержащие менее 12% Cr, практически в столь же большой степени подвержены коррозии, как и железо. Стали содержащие 12-14% Cr, ведут себя как благородные металлы: обладая положительным электрохимическим потенциалом, они не ржавеют и не окисляются на воздухе, в воде, в ряде кислот, солей и щелочей.

Хромистые нержавеющие стали

Хромистые нержавеющие стали применяют трех типов: 13, 17 и 27% Cr в зависимости от требований имеют различное содержание углерода.

Стали с более 17% Cr имеют иногда небольшие добавки титана и никеля, которые вводят для улучшения механических свойств. Помимо этого стали с таким содержанием хрома обладают высокой коррозионной стойкостью вплоть до температуры 900 ºС.

Стали с содержанием хрома 13% более распространенные и наименее дорогостоящие, их применяют для бытовых назначений и в технике. Эти стали хорошо поддаются сварке. Сплавы с низким содержанием углерода пластичны, с высоким — обладают высокой твердостью и повышенной прочностью, из них изготавливают детали повышенной прочности и износоустойчивости (хирургический инструмент, подшипники, пружины и другие детали, работающие в активной коррозионной среде).

Аустенитные стали

Введение достаточного количества никеля (Ni) в хромистую сталь обеспечивает лучшую механическую прочность, делает сталь более коррозионностойкой и не хладноломкой. Нержавеющие стали с 18% Cr и 10% Ni получили наиболее широкое распространение в машиностроении.

Для того, чтобы повысить сопротивление коррозии в кислотах в сталь вводят молибден и медь, особенно молибден с медью при одновременном увеличении содержания никеля. При необходимости, чтобы иметь еще и высокие механические свойства вводят титан и алюминий.

Более высокую коррозионную стойкость имеют никеливые сплавы типа хастеллой 80% Ni и 20% Mo (сплавы НИМО) с дополнительным легированием.

Титан (Ti) имеет высокую удельную прочность, благодаря чему сплавы на его основе получили широкое применение в технике, особенно в тех областях, где важное значение имеет масса (авиация, ракетостроение и др.). Титан обладает высокой коррозионной стойкостью в большом количестве агрессивных сред, превосходя зачастую в этом отношении нержавеющую сталь. Поэтому проще перечислить среды, в которых титан растворяется: например, плавиковая, соляная, серная, ортофосфорная, щавелевая и уксусная кислоты.

Высокая коррозионная стойкость титана обусловлена образованием на поверхности плотной защитной оксидной пленки. Если эта пленка не растворяется в окружающей среде, то можно считать, что титан в ней абсолютно стоек. Например, морская вода за 4000 лет растворит слой титана толщиной 30 — 40 микрон (1 микрон равен 10-4 см). Если же оксидная пленка растворима в данной среде, то применение в ней титана недопустимо.

Тугоплавкие металлы

К тугоплавким относят металлы: ванадий, вольфрам, гафний, молибден, ниобий, тантал, технеций, титан, хром, цирконий, — температура плавления которых выше температуры плавления железа (1539 ºС), кроме металлов платиновой и урановой групп и некоторых редкоземельных.

Следует отметить, что при высоких температурах все тугоплавкие металлы являются кислотостойкими. При этом наиболее сильно выделяется тантал. Ниобий и молибден по коррозионной стойкости превосходят сплавы на основе железа или никеля, однако уступают танталу.

Применение таких материалов целесообразно в средах, в которых другие материалы не обладают коррозионной стойкостью. К таким средам относятся неорганические крепкие кислоты при повышенных температурах, а так же некоторые промышленные среды.

Несмотря на высокую стоимость металлов по сравнению с такими коррозионностойкимиматериалами, как высоколегированная нержавеющая сталь или хастеллой, применение сплавов тугоплавких металлов оправдано, так как вследствие высокой стойкости возможно эксплуатировать химические установки практически весь срок без замены приборов.Коррозионная стойкость нержавеющих сталей в некоторых кислотах.Прии комнатной температуре высокой стойкостью в этой кислоте обладают все

Коррозионная стойкость нержавеющих сталей в некоторых кислотах

Серная кислота

При 70ºС хромоникелевые стали нестойки даже в кислотах слабой концентрации, но примерно до 5% H2SO4 могут работать стали с добавлением молибдена и меди.

Однако последние разрушаются в кипящей серной кислоте до концентрации 30%. В этих случаях следует применять сплавы типа хастеллой, а при концентрации выше 30% в кипящей серной кислоте могут работать лишь тугоплавкие металлы.

Фосфорная кислота

При комнатной температуре любой концентрации устойчивы аустенитные стали, хромистые нет. В горячей кислоте устойчивы стали с добавками молибдена и меди до концентрации 25%, в кипящей — хастеллой до 50%, а при более высокой устойчивы лишь тугоплавкие металлы.

В соляной кислоте устойчивы стали с добавлением молибдена или меди при комнатной температуре и до концентрации 5%.

Коррозионная стойкость металлов и сплавов при нормальных условиях

Данная таблица коррозионной стойкости предназначена для составления общего представления о том, как различные металлы и сплавы реагируют с определенными средами.
Рекомендации не являются абсолютными, поскольку концентрация среды, ее температура, давление и другие параметры могут влиять на применимость конкретного металла и сплава.
На выбор металла или сплава также могут оказывать влияние экономические соображения.

Условные обозначения:

А — обычно не корродирует,
В — коррозия от минимальной до незначительной,
С — не подходит

Источник статьи: http://mnk-rus.com/chemical_resistance

Adblock
detector