Меню

Формула расчета свариваемости стали

Оценка свариваемости сталей. Формулы углеродного эквивалента

Оценка свариваемости сталей включает в себя такие показатели, как:

1. Склонность стали к образованию холодных и горячих трещин при сварке в металле сварного шва или зоне термического влияния.

2. Склонность к образованию закалочных структур и изменению структуры металла в зоне термического влияния. В этой области происходит сильное укрупнение зёрен, и, как следствие, снижение прочности.

3. Физико-механические характеристики сварного соединения

4. Соответствие специальных показателей сварного соединения (таких как жаропрочность, износостойкость и др.) заданным требованиям.

Формулы углеродного эквивалента сталей и других параметрических выражений для оценки свариваемости

Для оценки свариваемости сталей применяют такую величину, как углеродный эквивалент сталей (Сэкв). При определении углеродного эквивалента учитывается химический состав сталей, т.к. влияние легирующих элементов на свариваемость стали очень большое. Особенно сильно на свариваемость влияет углерод (С). Для определения склонности металла к образованию холодных трещин при сварке, применяют следующие формулы расчёта углеродного эквивалента:

Сэкв=С+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15, % — данная формула принята для расчёта в Европейском стандарте

Сэкв=С+Mn/6+Si/24+Ni/40+Cr/5+Mo/4, % — эта формула для определения углеродного эквивалента стали в стандартах Японии

Cэкв=C+Mn/20+Ni/15+(Cr+Mo+V)/10, % — такая формула углеродного эквивалента предлагается Британским институтом сварки

Однако, как оказалось на практике, для микролегированных сталей с пониженным содержанием углерода эти уравнения не могут охарактеризовать снижение прочности из-за роста зёрен. Немцем Дюреном была выведена формула углеродного эквивалента микролегированных сталей, которая достаточно точно характеризует их склонность к образованию холодных трещин:

Значение углеродного эквивалента позволяет определить, к какой группе свариваемости сталей относится та, или иная марка, кроме того, это значение понядобится, чтобы определить температуру предварительного подогрева при сварке металлов. Определяется она по формуле:

где С — общий эквивалент углерода, который можно вычислить следующим образом:

Сэкв — химический эквивалент углерода, вычисляется по формулам, приведённым выше;
Сs — эквивалент углерода, в зависимости от толщины листа, в мм. Вычисляется по формуле:

В итоге, получаем: С=Сэкв*(1+0,005*S)

Кроме углеродного эквивалента для определения и оценки свариваемости сталей существуют несколько параметрических формул, из которых наибольшую популярность получила формула Ито-Бессио:

Где К — коэффициент интенсивности жёсткости, который Ито и Бессио применяли при расчётах на основании данных, которые они получили при оценке свариваемости сталей с У-образной разделкой кромок.

К=Ко*S, где Ко — константа, равная 69; S — толщина листа, мм. Исследования, проведённые позже, показали, что константу Ко=69 можно применять для приблизительных определений величины К в случае, когда свариваются листы большой толщины, до 150 мм включительно.

Рсм — коэффициент, характеризующий снижение прочности вследствие структурного преобразования сплава;
Н — количество растворённого водорода в металле, образующего сварной шов, измеряется в мл/100г. В Японских стандартах величина Н=0,64, в Европейских Н=0,93.

Многочисленные измерения показали, что при Рw>0,286, то возникает риск возникновения холодных трещин в сварном соединении.

Если речь идёт об опасности образования горячих трещин в металле сварного шва, то оценить свариваемость стали по этому критерию можно при помощи показателя HCS, вычисляемого по формуле:

Если получившаяся величина HCS>4, то возникает риск образования горячих трещин. Однако, если выполняется сварка высокопрочных сталей большой толщины, то риск возникновения данного дефекта сварного шва возникает уже при показателе HCS>1,6…2.

Основной способ оценки теоретической свариваемости сталей

На практике одним из основных и, зачастую, трудноопределимым дефектом сварного шва являются холодные трещины. Поэтому, наиболее популярной оценкой свариваемости стали, является определение углеродного эквивалента Сэкв по вышеуказанным формулам.

Исходя из получившейся величины, можно условно разделить стали на 4 группы свариваемости:

Сэкв не более 0,2 — свариваемость стали хорошая;
Сэкв свыше 0,2 и не более 0,35 — свариваемость стали удовлетворительная;
Сэкв свыше 0,35 и не более 0,45 — сталь ограниченно свариваемая;
Сэкв свыше 0,45 — свариваемость стали плохая (трудносвариваемая).

Об этом мы более подробно поговорим на странице: «Классификация сталей по свариваемости».

Источник

Свариваемость сталей

СВАРИВАЕМОСТЬ — способность металлов образовывать качественное сварное соединение, удовлетворяющее эксплуатационным требованиям

ЭКВИВАЛЕНТНОЕ СОДЕРЖАНИЕ УГЛЕРОДА (Сэк) — количественная характеристика свариваемости. Она определяется по формуле:

где С — содержание углерода, %;

Mn, Cr. — содержание легирующих элементов, %

ГРУППА СВАРИВАЕМОСТИ

МАРКИ СТАЛЕЙ

Углеродистые

Легированные

Высоколегированные

ВСт1; ВСт2; ВСт3; ВСт4; Стали 08; 10; 15; 20; 25

15Г; 20Г; 15Х; 15ХА; 20Х; 15ХМ; 20ХГСА; 10ХСНД; 10ХГСНД; 15ХСНД

08Х20Н14С2; 20Х23Н18; 08X18Н10; 12X18Н9Т; 15X5

12ХН2; 12ХНЗА; 20ХНЗА; 20ХН; 20ХГСА; 30Х; 30ХМ; 25ХГСА

35Г; 40Г; 45Г; 40Г2; 35Х; 40Х; 45Х; 40ХМФА; 40ХН; 30ХГС; 30ХГСА; 35ХМ; 20Х2Н4МА

17X18Н9; 12Х18Н9; 36X18Н25С2; 40Х9С2

Стали 50; 55; 60; 65; 70; 75; 80; 85

50Г; 50Г2; 50Х; 50ХН; 45ХНЗМФА; ХГС; 6ХС; 7X3

40X10С2М; 40X13; 95X18; 40X14Н14В2М; 40X10С2М

ГРУППА СВАРИВАЕМОСТИ

УСЛОВИЯ СВАРКИ

Без ограничений, в широком диапазоне режимов сварки независимо от толщины металла, жесткости конструкций, температуры окружающей среды

Сварка только при температуре окружающей среды не ниже — 5 °С, толщине металла менее 20 мм при отсутствии ветра

Сварка с предварительным или сопутствующим подогревом до 250 °С в жестком диапазоне режимов сварки

Сварка с предварительным и сопутствующим подогревом, термообработкой после сварки

Источник

Свариваемость сталей

Свариваемость — способность металла к образованию качественных сварных соединений, удовлетворяющих эксплуатационные требования к ним.

Возможности и условия образования качественного сварного соединения определяются многими факторами, важнейшими из которых являются:

  • характеристики и свойства свариваемых металлов;
  • выбор электродного и присадочного металла;
  • режимы сваривания;
  • температура нагревания и т. д.

На свариваемость существенно влияет химический состав стали, в частности, содержание углерода и легирующих элементов. Воздействие отдельных элементов проявляется по-разному – особенно в соединении с углеродом.

Среди главных характеристик свариваемости сталей стоит выделить склонность к образованию трещин и механические свойства сварного соединения. Их можно определить путем сваривания контрольных образцов.

Читайте также:  Баклажаны стали коричневые снаружи можно ли их есть

Формула определения свариваемости стали

Если известен химический состав стали, можно определить ее свариваемость по эквивалентному содержанию углерода. Для этого используют формулу:

С экв. = С + Mn/20 + Ni/15 + (Cr + Mo + V)/10.

Цифры в этой формуле – это постоянные величины, а символы каждого из химических элементов обозначают максимальное включение его в сталь определенной марки, выражаемое в процентах.

Эквивалентное содержание углерода, полученное по этой формуле, является указанием на свариваемость сталей, которые можно условно разделить на четыре группы:

  • хорошо свариваемые (Сэкв не превышает 0,25%);
  • удовлетворительно свариваемые (Сэкв = 0,25% – 0,35%);
  • ограниченно свариваемые (Сэкв = 0,35 – 0,45%);
  • плохо свариваемые (Сэкв превышает 0,45%).

О хорошей свариваемости низкоуглеродистых сталей можно судить по прочному сварному соединению с основным металлом без трещин и снижения пластичности в околошовной зоне.

Свариваемость легированных сталей оценивается по возможности получения соединений, устойчивых к образованию трещин и закаленных структур, а также по снижению прочности, коррозии и так далее.

Однородные металлы свариваются гораздо легче, чем разнородные. Металл шва и металл зоны термического воздействия являются неоднородными. Признак неудовлетворительной свариваемости – склонность к образованию трещин, категорически недопустимых в сварных соединениях.

Характеристикой свариваемости термически упроченных сталей является склонность к снижению прочности в зоне термического воздействия при температуре 400-720º C, в зависимости от температуры отпуска стали при ее изготовлении на заводе. Таким образом, изготовление прочной сварной конструкции возможно только при условии детального изучения и учета свариваемости стали.

Влияние основных элементов на свариваемость сталей

Углерод, если его в стали менее 0,25%, свариваемость не ухудшает, а при большем его содержании свариваемость ухудшается, поскольку в зоне термического воздействия образуются закаленные структуры, что имеет следствием образование трещин. Если повышенное содержание углерода отмечается в присадочном материале, это приводит к пористости шва.

Марганец при его содержании не более 0,8% свариваемость не ухудшает, но при превышении этого показателя велики риски появления трещин из-за того, что этот элемент способствует закаленности стали.

Кремний в пределах 0,02–0,35% никак не воздействует на качество сваривания, а при содержании от 0,8 до 1,5% существенно затрудняет сварку по причине повышенной жидкотекучести и образования тугоплавких оксидов кремния.

Ванадий способствует закаленности стали, что усложняет процесс сварки. При сваривании ванадий, активно окисляясь, выгорает.

Вольфрам повышает прочность стали и усложняет сварку по причине сильного окисления.

Никель повышает пластичность и мощность, при этом не ухудшая свариваемость стали.

Молибден при сварке активно окисляется и выгорает, способствуя образованию трещин.

Хром, образующий тугоплавкие карбиды, значительно затрудняет сварку.

Ниобий и титан в процессе сварки соединяются с углеродом и препятствуют образованию карбида хрома, способствуя улучшению свариваемости.

Медь улучшает свариваемость, повышая прочность и пластичность стали, делая ее более устойчивой к коррозии.

Кислород работает на снижение пластичности и прочности стали, ухудшая ее свариваемость.

Азот обладает способностью создавать нитриды, то есть химические соединения с железом, которые повышают твердость и прочность, существенно снижая показатели пластичности стали.

Водород негативно сказывается на свариваемости, поскольку он накапливается в шве, вызывая образование пор и мелких трещин.

Фосфор – вредная добавка, повышающая твердость стали и делающая ее более хрупкой, что приводит к образованию холодных трещин.

Сера крайне нежелательна, поскольку она способствует быстрому образованию горячих трещин. При превышении содержания серы свариваемость резко ухудшается.

Источник

Оценка свариваемости сталей. Формулы углеродного эквивалента

Главная>>Свариваемость сталей>>Оценка свариваемости. Углеродный эквивалент
Оценка свариваемости сталей включает в себя такие показатели, как:

1. Склонность стали к образованию холодных и горячих трещин при сварке в металле сварного шва или зоне термического влияния.

2. Склонность к образованию закалочных структур и изменению структуры металла в зоне термического влияния. В этой области происходит сильное укрупнение зёрен, и, как следствие, снижение прочности.

3. Физико-механические характеристики сварного соединения

4. Соответствие специальных показателей сварного соединения (таких как жаропрочность, износостойкость и др.) заданным требованиям.

Определение свариваемости сталей

Перед тем, как говорить о сварке сталей, необходимо рассмотреть понятие о свариваемости. Так называется свойство, позволяющее стали переносить варку без потери качества. Если получается шов, отвечающий ГОСТ 2601 и особенностям конструкции, это говорит о хорошей свариваемости металлов и сплавов.

Металлы имеют разную степень свариваемости, в сплавы могут быть включены элементы, которые снижают или увеличивают эту способность. Однако, не только вид металла влияет, также нужно учитывать:

  • количество вредных примесей, их количество;
  • условия окружающей среды;
  • количество элементов, добавленных для улучшения свойств сплава;
  • толщина детали;
  • содержание углерода.

Режим сварки тоже может сыграть роль, так как некоторые металлы предполагают только определенные виды соединений. Так квалификация сварщика тоже косвенно влияет.

Классификация стали по степени ее свариваемости

Сталь представлена различными группами марок, обладающими своими физико-химическими свойствами. Вследствие этого, у металлических изделий неодинаковый показатель свариваемости. В зависимости от этого параметра железо-углеродистые сплавы подразделяется на четыре категории.

  1. Хорошая При сварке получается качественный шов. Металл не требует предварительного нагрева для проведения работ, а сами они проходят в обычном режиме и с применением всех известных технологий.
  2. Удовлетворительная Чтобы создать качественное сварное соединение, стальные изделия необходимо подготовить, то есть разогреть.
  3. Ограниченная Перед сваркой металлические изделия сначала разогревают, а после их соединения подвергают еще и термической обработке.
  4. Плохая Такая сталь характеризуется тем, что во время сварки (после нее) на поверхности образуются трещины, а также могут возникать «закалочные» структуры, снижающие прочность и надежность соединения, делающие его хрупким.

Классификация сталей по свариваемости

Чтобы облегчить определение способности металлов к свариванию, марки сталей были поделены на 4 группы свариваемости деталей. Для представления каждой классификации, а также ее особенностей создана таблица свариваемости:

Читайте также:  Ногти стали ребристыми что это значит причины
Класс свариваемости Концентрация углерода Марки стали Особенности процесса сварки
I — Хорошо До 0,25% Углеродистые: ВСт1–4, Стали 08, 10, 15, 20, 25. Здесь нет ограничений, зависимости от плотности детали, температурных параметров. Поэтому можно подбирать любой режим сварки.
Легированные: 15Г, 20Г, 15Х, 20Х, 15ХМ, 20ХГСА, 10ХСНД, 10ХГСНД, 15ХСНД.
II — Удовлетворительно От 0,25 до 0,35% Углеродистые: ВСт5, Стали 30, 35. Безветренная погода, температура среды от +5 и выше. Максимально допустимая толщина металла — 20мм.
Легированные: 12ХН2, 12ХН3А, 20ХН, 20ХН3А, 30Х, 30ХМ, 25ХГСА.
III — Ограниченно От 0,35 до 0,45% Углеродистые: ВСт6, Стали 40, 45. Режимы сварки подбираются из допустимых, их список строго ограничен. Перед сваркой или во время нее деталь прогревается до 250ºC.
Легированные: 35Г, 40Г, 45Г, 40Г2, 35Х, 40Х, 45Х, 40ХМФА, 40ХН, 30ХГС, 30ХГСА, 35ХМ, 20Х2Н4МА.
IV — Плохо Выше 0,45% Углеродистые: Стали 50, 55, 60, 65, 70, 75, 80, 85. Сварка с нагревом и обязательной обработкой после.
Легированные: 50Г, 50Г2, 50Х, 50ХН, 45ХН3МФА, 6ХС, 7Х3.

Группы свариваемости

Учитывая все, выше перечисленные критерии, свариваемость можно подразделить на группы с различными свойствами.

Классификация металлов по свариваемости:

  • Хорошая – коэффициент Сэкв составляет не менее 0,25 %– для изделий из низкоуглеродистых сталей, независимо от условий погоды, толщины изделия, предварительной подготовки.
  • Удовлетворительная – коэффициент Сэкв находится в пределах 0,25-0,35 %. Ограничения: по диаметру свариваемого изделия, условиям природной среды. Толщина материала допускается не более 2 см, температура воздуха должна быть не ниже минус 5 градусов, безветренную погоду.
  • Ограниченная – коэффициент Сэкв в пределах 0,350-0,45%. Для формирования высококачественного сварного соединения требуется предварительный подогрев материала. Эта процедура нужна для «плавного» аустенитного преобразования, создания устойчивых структур (бейнитные, ферритно-перлитные).
  • Плохая – коэффициент Сэкв порядка 45-ти % (стали 45). В данном случае невозможно обеспечить стабильность сварочного соединения без предварительного подогрева металлических кромок, термической обработки готовой конструкции. Для создания требуемой микроструктуры нужно дополнительно осуществлять подогревы, охлаждения.

Группы свариваемости предоставляют возможность понимать технологическую специфику сваривания железоуглеродистых сплавов конкретных марок.

Зависимо от категории, технологических параметров, свойства сварных соединений могут корректироваться последовательными температурными воздействиями. Термообработка может осуществляться несколькими способами: отпуск, закаливание, нормализация, отжиг. Наиболее востребованы закалка, отпуск. Подобные процедуры повышают твердость, соответственно прочность сварного соединения, предотвращают формирование трещин на материале, снимают напряжение. Показатель отпуска будет зависеть от желаемых характеристик материала.

Влияние легирующих элементов на свариваемость

Помимо углерода учитываются и легирующие элементы, и здесь в первую очередь влияют на свариваемость:

  • Углерод. Чем выше концентрация углерода, тем ниже пластичность металла, а значит снижается его способность к сварке. Обусловлено это тем, что при окислении углерода образуется множество газовых пор, из-за которых шов будет подвержен дефектам, быстрому разрушению. Поэтому легче всего будет работать с низкоуглеродистой сталью, где содержание этого элемента ниже 0,25%.
  • Кремний. Обычно кремний вводится как раскислитель, поэтому в концентрации ниже 0,3% он не мешает качественной сварке. Однако, когда этот процент увеличивается до 0,5-1,5%, кремний становится легирующих элементом. Из-за него появляются тугоплавкие окислы, приводящие к выделению большого количества шлака, поэтому свариваемость детали ухудшается.
  • Фосфор. Допустимое количество фосфора — 0,08%, если оно выше, способность к свариванию детали снижается, так как появляются холодные трещины.
  • Никель. Никель способен повышать прочность детали, а также ее пластичность, поэтому свариваемость улучшается. В низколегированных сталях содержание никеля обычно около 5%, а в высоколегированных до 35%.
  • Молибден. В сталях, обладающих теплоустойчивостью, концентрация молибдена обычно держится на уровне 0,2-0,8%, а в специальных, используемых в средах с высокой температурой, молибдена не меньше 2–3%. Крепость детали, а также ее пластичность увеличиваются, но риск появления дефектов в шве остается.
  • Хром. Концентрация хрома до 0,25% не создает проблем для такого параметра, как свариваемость металлов. Но при увеличении количества этого элемента способность к варке снижается, а концентрация выше 1,1% уже считается плохим для сварки. Из-за хрома химическая стойкость стали снижается, из-за чего появляются тугоплавкие окислы. Карбиды, выделяющиеся здесь при сварке, провоцируют коррозии.
  • Вольфрам. Вольфрам снижает способность к сварке детали, сильно окисляется.
  • Ниобий, титан. Оба элемента улучшают свариваемость детали, обычно они добавляются, чтобы снизить негативное влияние других элементов. Например, титан или ниобий в содержании 0,5-1% будет вступать в реакцию с углеродом и мешать появлению карбида, если в стали содержится хром. Так коррозия металла снизится.
  • Азот. Этот элемент используется для снижения температуры сварочной ванны. Его использование провоцирует выделение нитридов железа, увеличивающих твердость металла, но снижают пластичность, а значит и способность к сварке.
  • Сера. Допустимое содержание серы в стали до 0,06%. Если этот процент выше, горячих трещин не избежать.
  • Медь. Положительно влияет на свариваемость, повышает как прочность, так и пластичность, а также вязкость и даже стойкость к коррозии. Обычно содержание меди не бывает выше 0,8%, этого уже достаточно для положительного эффекта.

Формулы углеродного эквивалента сталей и других параметрических выражений для оценки свариваемости

Для оценки свариваемости сталей применяют такую величину, как углеродный эквивалент сталей (Сэкв). При определении углеродного эквивалента учитывается химический состав сталей, т.к. влияние легирующих элементов на свариваемость стали очень большое. Особенно сильно на свариваемость влияет углерод (С). Для определения склонности металла к образованию холодных трещин при сварке, применяют следующие формулы расчёта углеродного эквивалента:

Сэкв=С+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15, % — данная формула принята для расчёта в Европейском стандарте

Сэкв=С+Mn/6+Si/24+Ni/40+Cr/5+Mo/4, % — эта формула для определения углеродного эквивалента стали в стандартах Японии

Читайте также:  Кино типа живая сталь

Cэкв=C+Mn/20+Ni/15+(Cr+Mo+V)/10, % — такая формула углеродного эквивалента предлагается Британским институтом сварки

Однако, как оказалось на практике, для микролегированных сталей с пониженным содержанием углерода эти уравнения не могут охарактеризовать снижение прочности из-за роста зёрен. Немцем Дюреном была выведена формула углеродного эквивалента микролегированных сталей, которая достаточно точно характеризует их склонность к образованию холодных трещин:

Значение углеродного эквивалента позволяет определить, к какой группе свариваемости сталей относится та, или иная марка, кроме того, это значение понядобится, чтобы определить температуру предварительного подогрева при сварке металлов. Определяется она по формуле:

где С — общий эквивалент углерода, который можно вычислить следующим образом:

Сэкв — химический эквивалент углерода, вычисляется по формулам, приведённым выше; Сs — эквивалент углерода, в зависимости от толщины листа, в мм. Вычисляется по формуле:

В итоге, получаем: С=Сэкв*(1+0,005*S)

Кроме углеродного эквивалента для определения и оценки свариваемости сталей существуют несколько параметрических формул, из которых наибольшую популярность получила формула Ито-Бессио:

Где К — коэффициент интенсивности жёсткости, который Ито и Бессио применяли при расчётах на основании данных, которые они получили при оценке свариваемости сталей с У-образной разделкой кромок.

К=Ко*S, где Ко — константа, равная 69; S — толщина листа, мм. Исследования, проведённые позже, показали, что константу Ко=69 можно применять для приблизительных определений величины К в случае, когда свариваются листы большой толщины, до 150 мм включительно.

Рсм — коэффициент, характеризующий снижение прочности вследствие структурного преобразования сплава; Н — количество растворённого водорода в металле, образующего сварной шов, измеряется в мл/100г. В Японских стандартах величина Н=0,64, в Европейских Н=0,93.

Многочисленные измерения показали, что при Рw>0,286, то возникает риск возникновения холодных трещин в сварном соединении.

Если речь идёт об опасности образования горячих трещин в металле сварного шва, то оценить свариваемость стали по этому критерию можно при помощи показателя HCS, вычисляемого по формуле:

Если получившаяся величина HCS>4, то возникает риск образования горячих трещин. Однако, если выполняется сварка высокопрочных сталей большой толщины, то риск возникновения данного дефекта сварного шва возникает уже при показателе HCS>1,6…2.

Оборудование для сварки

Вне зависимости от того, о каких свариваемых разнородных сталях идет речь, оборудование для выполнения сварочных работ делится на две группы:

  1. Рабочее оборудование, которое включает в себя: источник сварочного тока, силовые кабели питания источника от электрической сети или генераторов; кабели для подведения сварочного тока к свариваемым изделиям и создания сварочной цепи, в случае использования технологий с защитным газом – баллоны с газом или специальные устройства-генераторы, сварочные молотки, щетки по металлу, электроинструмент (болгарки и угловые шлифовальные машинки) для итоговой обработки сварных соединений. Кроме того, в качестве оборудования для сварки следует рассматривать присадочные материалы (сварочная проволока, электроды), а также механизмы для их направления в сварочную зону (машинки для подачи проволоки, электродержатели для электродов).
  2. Защитное оборудование. Данный вид оборудования является чаще всего индивидуальным и включает в себя: защитную одежду, прошедшую пропитку с целью огнезащиты, сварочную маску с темным стеклом или самозатемняющуюся маску, краги или перчатки, защитную обувь.

В качестве дополнительного оборудования сварочного поста рассматривается сварочный стол, а также инструменты для закрепления свариваемых деталей в необходимых пространственных положениях.

Вычисление значения твердости в зоне термического влияния

Следующий параметр, на который следует обратить внимание, — твердость зоны термического влияния (ЗТВ). Так называют участок изделия, который расположен возле образовавшегося шва. В этой области под воздействием температуры происходят фазовые превращения с изменением внутренней структуры металла. Порой это чревато тем, что сталь становится хрупкой.

Твердость металла в этой зоне определяют по методу Виккерса. Если ее значения лежат в диапазоне 350-400 по специальной HV-шкале, то на участке ЗТВ точно находятся продукты распада аустенита (одна из модификаций железа и его сплавов), как раз и инициирующие образование холодных трещин.

Максимальное значение твердости углеродистой и низколегированной стали вычисляют, располагая данными о химическом составе металла, по этой формуле:

где С, Mn, Si, Cr, Ni — массовые доли (в процентах) химических элементов.

Способы устранения холодных трещин при сварке

Образование трещин ухудшает поверхность металла и, соответственно, уменьшает прочность готовой конструкции. Предотвратить их появление поможет следующее:

  • пересмотр (изменение) конструктивных решений, который позволит снизить жесткость в области сварного узла;
  • тщательный контроль за ходом проведения сварки при оптимальном режиме поможет уменьшить содержание диффузионного водорода;
  • проведение сварочных работ с соблюдением особых параметров, которые воспрепятствуют охрупчиванию металла и будут содействовать удалению из шва диффузионное водорода.

Из перечисленных способов, снижения вероятности появления холодных трещин при проведении сварочных работ, самый востребованный — последний.

Понятие разнородных сталей и особенности их сварки

Разнородные стали – это стали, которые различаются по своему химическому составу, степени легирования, классам, типам, степени теплопроводности и подверженности сваривания между собой.

При осуществлении сварки разнородных сталей следует учитывать ключевую особенность, которая присуща подавляющему большинству создаваемых сварных соединений: в процессе сварки могут образовываться интерметаллидные структуры, то есть соединения двух и более металлов, обладающих более высокой температурой плавления, нежели те исходные стали, что были использованы для создания изделия. Однако такие структуры могут быть очень хрупкими, и это может привести к разрушению сварного шва при несоблюдении технологии сварки.

Для того чтобы полученный шов был максимально плотным и качественным, края свариваемых деталей необходимо предварительно подогревать с помощью газовой горелки или паяльной лампы. Это не только позволит выпарить лишнюю влагу на подготовительном этапе, но также и подготовить деталь к сварке в соответствии с ее физико-химическими параметрами.

Источник

Adblock
detector