Меню

Этин аммиачный раствор хлорида меди

Этин аммиачный раствор хлорида меди

Ацетилен и его гомологи с концевой тройной связью (алкины-1) вследствие полярности связи проявляют слабые кислотные свойства: атомы водорода могут замещаться атомами металла. При этом образуются соли – ацетилениды :

Ацетилениды щелочных и щелочноземельных металлов используются для получения гомологов ацетилена ( раздел 6.5 ).

При взаимодействии ацетилена (или R–C≡C–H) с аммиачными растворами оксида серебра или хлорида меди (I) выпадают осадки нерастворимых ацетиленидов:

Образование серовато-белого осадка ацетиленида серебра (или красно-коричневого – ацетиленида меди RC≡CCu) служит качественной реакцией на концевую тройную связь. Видеоопыт «Получение ацетиленида серебра».
Видеоопыт «Получение ацетиленида меди». В сухом состоянии ацетилениды тяжелых металлов неустойчивы и легко взрываются. Видеоопыт «Неустойчивость ацетиленидов». Ацетилениды разлагаются при действии кислот:

Если тройная связь находится не на конце углеродной цепи, то кислотные свойства отсутствуют (нет подвижного атома водорода) и ацетилениды не образуются:

Источник

Ацетиленид меди(I): получение и свойства

Ацетиленид меди является металлорганическим бинарным соединением. Данная формула известна науке по крайней мере с 1856 года. В кристаллах образует моногидрат с формулой Cu2C2×H2O. Термически неустойчив, при нагревании взрывается.

Строение

Ацетиленид меди является бинарным соединением. Можно условно выделить в нем отрицательно заряженную часть — анион C 2− 2, и положительно заряженную — катионы меди Cu + . На самом деле такое деление условно: в соединении есть лишь доля ионной связи, хотя она больше по сравнению со связью H-C≡. Но и указанная связь имеет очень сильную полярность (как для ковалентной) из-за того, что атом углерода с тройной связью находится в sp-гибридизации — его относительная электроотрицательность больше, чем в гибридизациях sp 3 (одинарная связь) или sp 2 (двойная связь). Именно это позволяет углероду в ацетилене сравнительно легко отщеплять от себя атом водорода и замещать его атомом металла, то есть проявлять свойства, присущие кислотам.

Получение

Наиболее распространенный способ получения ацетиленида меди в лаборатории — пропускание газообразного ацетилена сквозь аммиачный раствор хлорида меди(I). В результате образуется нерастворимый осадок ацетиленида красноватого цвета.

Вместо хлорида меди(I) также можно использовать ее гидроксид Cu2O. В обоих случаях важно то, что фактически реакция идет с аммиачным комплексом меди.

Физические свойства

Ацетиленид меди в чистом виде — темные красно-коричневые кристаллы. На самом деле это моногидрат — в осадке каждой молекуле ацетиленида соответствует одна молекула воды (записывается в виде Cu2C2×H2O). Сухой ацетиленид меди взрывоопасен: может сдетонировать при нагревании (он менее термически устойчив, чем ацетиленид серебра), а также при механическом воздействии, например при ударе.

По этому поводу существует предположение, что медные трубы на химических производствах несут большую опасность, так как при длительной эксплуатации внутри образовывается ацетиленид, который потом может привести к сильному взрыву. Особенно это актуально для области нефтехимии, где медь, а также ее ацетилениды используются также и в качестве катализаторов, что повышает уровень риска.

Химические свойства

Мы уже говорили о том, что углерод с тройной связью в ацетилене гораздо более электроотрицателен, чем, например, углерод со связью двойной (как в этилене) или одинарной (в этане). Способность ацетилена реагировать с некоторыми металлами, отдавая ион водорода и замещая его ионом металла (например, реакция образования ацетиленида натрия при взаимодействии ацетилена с металлическим натрием) подтверждает это. Мы называем эту способность ацетилена одним из кислотных свойств в соответствии с теорией Бренстеда — Лоури: согласно ей, кислотность вещества определяется его способностью отщепить от себя протон. Кислотность ацетилена (в ацетилениде меди также) можно рассмотреть относительно аммиака и воды: при взаимодействии амида металла с ацетиленом образуется ацетиленид и аммиак. То есть ацетилен отдает протон, что характеризует его как более сильную, чем аммиак, кислоту. В случае с водой ацетиленид меди разлагается, образуя ацетилен — он принимает протон воды, показывая себя менее сильной кислотой, чем вода. Так, в относительном ряде кислотности (по Бренстеду — Лоури) ацетилен является слабой кислотой, находясь где-то между водой и аммиаком.

Читайте также:  Электрохимический эквивалент меди при электролизе медного купороса

Ацетиленид меди(I) неустойчив: в воде (как нам уже известно) и в растворах кислот он разлагается с выделением газа ацетилена и красно-коричневого осадка — оксида меди(I) или белого осадка хлорида меди(I) в случае разбавления раствором соляной кислоты.

Чтобы избежать взрыва, разложение ацетиленида проводят аккуратным нагреванием во влажном виде в присутствии сильной минеральной кислоты, например разбавленной азотной.

Использование

Реакция образования ацетиленида меди(I) может быть качественной для обнаружения терминальных (с тройной связью на конце) алкинов. Индикатором является выпадения нерастворимого красно-коричневого осадка ацетиленида.

На крупнотоннажном производстве — например, в нефтехимии — ацетиленид меди(I) не используется, поскольку взрывоопасен и неустойчив в воде. Однако с ним связаны несколько специфичных реакций в так называемом тонком синтезе.

Ацетиленид меди(I) также может использоваться в качестве нуклеофильного реагента в органическом синтезе. В частности, важную роль он играет в процессе синтеза полиинов — соединений с несколькими чередующимися тройными и одинарными связями. Ацетилениды меди(I) в спиртовом растворе окисляются кислородом воздуха, конденсируясь с образованием диинов. Это реакция Глазера — Эллингтона, открытая в 1870 году и позже усовершенствованная. Медь(I) здесь играет роль катализатора, так как сама в процессе не расходуется.

Позже вместо кислорода в качестве окислителя был предложен гексацианоферрат(III) калия.

Эллингтон усовершенствовал метод получения полиинов. Вместо изначально вводившихся в раствор алкинов и солей меди(I), например хлорида он предложил брать ацетат меди(II), который окислял бы алкин в среде уже другого органического растворителя — пиридина — при температуре 60-70 °С.

Такая модификация позволила получать из диинов гораздо более крупные и устойчивые молекулы — макроциклы.

Источник

Химические свойства алкинов

Алкины – это непредельные (ненасыщенные) нециклические углеводороды, в молекулах которых присутствует одна тройная связь между атомами углерода С≡С.

Остановимся на свойствах, способах получения и особенностях строения алкинов.

Химические свойства алкинов

Алкины – непредельные углеводороды, в молекулах которых есть одна тройная связь. Строение и свойства тройной связи определяют характерные химические свойства алкинов. Химические свойства алкинов схожи с химическими свойствами алкенов из-за наличия кратной связи в молекуле.

Для алкинов характерны реакции окисления. Окисление алкенов протекает преимущественно по тройной связи, хотя возможно и жесткое окисление (горение).

1. Реакции присоединения

Тройная связь состоит из σ-связи и двух π-связей. Сравним характеристики одинарной связи С–С, тройной связи С ≡ С и связи С–Н:

Энергия связи, кДж/моль Длина связи, нм
С – С 348 0,154
С ≡ С 814 0,120
С – Н 435 0,107

Таким образом, тройная связь С≡С короче, чем одинарная связь С–С , поэтому π-электроны тройной связи прочнее удерживаются ядрами атомов углерода и обладают меньшей поляризуемостью и подвижностью. Реакции присоединения по тройной связи к алкинам протекают сложнее, чем реакции присоединения по двойной связи к алкенам.

Читайте также:  Сдать медь в пушкине

Для алкинов характерны реакции присоединения по тройной связи С ≡ С с разрывом π-связей.

1.1. Гидрирование

Гидрирование алкинов протекает в присутствии катализаторов (Ni, Pt) с образованием алкенов, а затем сразу алканов.

Например, при гидрировании бутина-2 в присутствии никеля образуется сначала бутен-2, а затем бутан.

При использовании менее активного катализатора (Pd, СaCO3, Pb(CH3COO)2) гидрирование останавливается на этапе образования алкенов.

Например, при гидрировании бутина-1 в присутствии палладия преимущественно образуется бутен-1.

1.2. Галогенирование алкинов

Присоединение галогенов к алкинам происходит даже при комнатной температуре в растворе (растворители — вода, CCl4).

При взаимодействии с алкинами красно-бурый раствор брома в воде (бромная вода) обесцвечивается. Это качественная реакция на тройную связь.
Например, при бромировании пропина сначала образуется 1,2-дибромпропен, а затем — 1,1,2,2-тетрабромпропан.

Аналогично алкины реагируют с хлором, но обесцвечивания хлорной воды при этом не происходит, потому что хлорная вода и так бесцветная)

Реакции протекают в присутствии полярных растворителей по ионному (электрофильному) механизму.

1.3. Гидрогалогенирование алкинов

Алкины присоединяют галогеноводороды. Реакция протекает по механизму электрофильного присоединения с образованием галогенопроизводного алкена или дигалогеналкана.

Например, при взаимодействии ацетилена с хлороводородом образуется хлорэтен, а затем 1,1-дихлорэтан.

При присоединении галогеноводородов и других полярных молекул к симметричным алкинам образуется, как правило, один продукт реакции, где оба галогена находятся у одного атома С.

При присоединении полярных молекул к несимметричным алкинам образуется смесь изомеров. При этом выполняется правило Марковникова.

Правило Марковникова: при присоединении полярных молекул типа НХ к несимметричным алкинам водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи.
Например, при присоединении хлороводорода HCl к пропину преимущественно образуется 2-хлорпропен.

1.4. Гидратация алкинов

Гидратация (присоединение воды) алкинов протекает в присутствии кислоты и катализатора (соли ртути II).

Сначала образуется неустойчивый алкеновый спирт, который затем изомеризуется в альдегид или кетон.

Например, при взаимодействии ацетилена с водой в присутствии сульфата ртути образуется уксусный альдегид.

Гидратация алкинов протекает по ионному (электрофильному) механизму.

Для несимметричных алкенов присоединение воды преимущественно по правилу Марковникова.

Например, при гидратации пропина образуется пропанон (ацентон).

1.5. Димеризация, тримеризация и полимеризация

Присоединение одной молекулы ацетилена к другой (димеризация) протекает под действием аммиачного раствора хлорида меди (I). При этом образуется винилацетилен:

Тримеризация ацетилена (присоединение трех молекул друг к другу) протекает под действием температуры, давления и в присутствии активированного угля с образованием бензола (реакция Зелинского):

Алкины также вступают в реакции полимеризации — процесс многократного соединения молекул низкомолекулярного вещества (мономера) друг с другом с образованием высокомолекулярного вещества (полимера).

nM → Mn (M – это молекула мономера)

Например, при полимеризации ацетилена образуется полимер линейного или циклического строения.

… –CH=CH–CH=CH–CH=CH–…

2. Окисление алкинов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

2.1. Горение алкинов

Алкины, как и прочие углеводороды, горят с образованием углекислого газа и воды.

Уравнение сгорания алкинов в общем виде:

Читайте также:  Сульфат алюминия хлорид меди молекулярное уравнение реакции
Например, уравнение сгорания пропина:

2.2. Окисление алкинов сильными окислителями

Алкины реагируют с сильными окислителями (перманганаты или соединения хрома (VI)). При этом происходит окисление тройной связи С≡С и связей С-Н у атомов углерода при тройной связи. При этом образуются связи с кислородом.

При окислении трех связей у атома углерода в кислой среде образуется карбоксильная группа СООН, четырех — углекислый газ СО2. В нейтральной среде — соль карбоновой кислоты и карбонат (гидрокарбонат) соответственно.

Таблица соответствия окисляемого фрагмента молекулы и продукта:

Окисляемый фрагмент KMnO4, кислая среда KMnO4, H2O, t
R-C ≡ R-COOH -COOMe
CH ≡ CO2 Me2CO3 (MeHCO3)

При окислении бутина-2 перманганатом калия в среде серной кислоты окислению подвергаются два фрагмента СН3–C ≡ , поэтому образуется уксусная кислота:

При окислении 3-метилпентина-1 перманганатом калия в серной кислоте окислению подвергаются фрагменты R–C и H–C , поэтому образуются карбоновая кислота и углекислый газ:

При окислении алкинов сильными окислителями в нейтральной среде углеродсодержащие продукты реакции жесткого окисления (кислота, углекислый газ) могут реагировать с образующейся в растворе щелочью в соотношении, которое определяется электронным балансом с образованием соответствующих солей.

Например, при окислении бутина-2 перманганатом калия в воде при нагревании окислению подвергаются два фрагмента R–C ≡ , поэтому образуется соль уксусной кислоты – ацетат калия

Аналогичные органические продукты образуются при взаимодействии алкинов с хроматами или дихроматами.

Окисление ацетилена протекает немного иначе, σ-связь С–С не разрывается, поэтому в кислой среде образуется щавелевая кислота:

В нейтральной среде образуется соль щавелевой кислоты – оксалат калия:

Обесцвечивание раствора перманганата калия — качественная реакция на тройную связь.

3. Кислотные свойства алкинов

Связь атома углерода при тройной связи (атома углерода в sp-гибридизованном состоянии) с водородом значительно более полярная. чем связь С–Н атома углерода при двойной или одинарной связи (в sp 2 и sp 3 -гибридном состоянии соответственно). Это обусловлено большим вкладом s-орбитали в гибридизованное состояние.

Гибридизация: sp sp 2 sp 3
Число s-орбиталей 1 1 1
Число p-орбиталей 1 2 3
Доля s-орбитали 50% 33% 25%

Повышенная полярность связи С–Н у атомов углерода при тройной связи в алкинах приводит к возможности отщепления протона Н + , т.е. приводит к появлению у алкинов с тройной связью на конце молекулы (алкинов-1) кислотных свойств.

Ацетилен и его гомологи с тройной связью на конце молекулы R–C ≡ C–H проявляют слабые кислотные свойства, атомы водорода на конце молекулы могут легко замещаться на атомы металлов.

Алкины с тройной связью на конце молекулы взаимодействуют с активными металлами, гидридами, амидами металлов и т.д.

Например, ацетилен взаимодействует с натрием с образованием ацетиленида натрия.

Например, пропин взаимодействует с амидом натрия с образованием пропинида натрия.

Алкины с тройной связью на конце молекулы взаимодействуют с аммиачным раствором оксида серебра (I) или аммиачным раствором хлорида меди (I).

При этом образуются нерастворимые в воде ацетилениды серебра или меди (I):

Алкины с тройной связью на конце молекулы взаимодействуют с аммиачным раствором оксида серебра или аммиачным раствором хлорида меди (I) с образованием белого или красно-коричневого осадка соответственно. Это качественная реакция на алкины с тройной связью на конце молекулы.

Соответственно, алкины, в которых тройная связь расположена не на конце молекулы, не реагируют с аммиачными растворами оксида серебра или хлорида меди (I).

Источник

Adblock
detector