Меню

Этиленгликолят меди ii цвет

Этиленгликоль: химические свойства и получение

Этиленгликоль C2H4(OH)2 или CH2(OH)CH2OH, этандиол-1,2 – это органическое вещество, предельный двухатомный спирт .

Общая формула предельных нециклических двухатомных спиртов: CnH2n+2O2 или CnH2n(OН)2

Строение этиленгликоля

В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атом кислорода в спиртах находится в состоянии sp 3 -гибридизации.

В образовании химических связей с атомами C и H участвуют две 2sp 3 -гибридные орбитали, а еще две 2sp 3 -гибридные орбитали заняты неподеленными электронными парами атома кислорода.

Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108 о .

Водородные связи и физические свойства спиртов

Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:

Поэтому этиленгликоль – жидкость с относительно высокой температурой кипения.

Водородные связи образуются не только между молекулами спиртов, но и между молекулами спиртов и воды. Поэтому спирты очень хорошо растворимы в воде. Молекулы спиртов в воде гидратируются:

Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.

Химические свойства этиленгликоля

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии этиленгликоля с растворами щелочей реакция практически не идет, т. к. образующийся алкоголят почти полностью гидролизуется водой.

Читайте также:  Гигиена полости рта меди

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому этиленгликоль не взаимодействует с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Этиленгликоль взаимодействует с активными металлами (щелочными и щелочноземельными).

Например, этиленгликоль взаимодействует с калием с образованием гликолята калия и водорода .

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии этиленгликоля с галогеноводородами группы ОН замещаются на галоген и образуются дигалогеналкан.

Например, этиленгликоль реагирует с бромоводородом.

2.2. Этерификация (образование сложных эфиров)

Многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Например, этиленгликоль реагирует с уксусной кислотой с образованием эфира:

2.4. Взаимодействие с кислотами-гидроксидами

Этиленгликоль взаимодействует и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этиленгликоля с азотной кислотой образуется нитроэтиленгликоль :

3. Дегидратация

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. При высокой температуре (180 о С) протекает внутримолекулярная дегидратация этиленгликоля и образуется соответствующий ацетальдегид.

4. Окисление этиленгликоля

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

4.1. Окисление оксидом меди (II)

Этиленгликоль можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества.

4.2. Окисление кислородом в присутствии катализатора

Этиленгликоль можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.).

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) этиленгликоль окисляется до щавелевой кислоты.

Читайте также:  Сульфат меди взаимодействует с карбонатом кальция
Например, при взаимодействии этиленгликоля с перманганатом калия в серной кислоте образуется щавелевая кислота

4.4. Горение этиленгликоля

При сгорании этиленгликоля образуется углекислый газ и вода и выделяется большое количество теплоты.

5. Дегидрирование этаниленгликоля

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования.

Например, при дегидрировании этиленгликоля образуется этандиаль

Получение этиленгликоля

1. Щелочной гидролиз дигалогеналканов

При взаимодействии дигалогеналканов с водным раствором щелочей образуются двухатомные спирты. Атомы галогенов в дигалогеналканах замещаются на гидроксогруппы.

Например, при нагревании 1,2-дихлорэтана с водным раствором гидроксида натрия образуется этиленгликоль

2. Гидрирование карбонильных соединений

Например, при гидрировании этандиаля образуется этиленгликоль

О=CН-CH=O + 2H2 CH2(OH)-CH2OH

3. Гидролиз сложных эфиров

При гидролизе сложных эфиров этиленгликоля и карбоновых кислот образуются этиленгликоль и карбоновая кислота.

4. Мягкое окисление алкенов

Мягкое окисление протекает при низкой температуре в присутствии перманганата калия. При этом раствор перманганата обесцвечивается.

В молекуле алкена разрывается только π-связь и окисляется каждый атом углерода при двойной связи.

При этом образуются двухатомные спирты (диолы).

Источник

Этиленгликолят меди ii цвет

Установите соответствие между реагирующими веществами и углеродосодержащим продуктом, который образуется при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберитесоответствующую позицию, обозначенную цифрой.

А) и

Б) и

В) и

Г) и

4) фенолформальдегидная смола

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А) При взаимодействии многоатомных спиртов и гидроксида меди (II) получаются комплексные соли меди и вода:

.

Таким образом букве А соответствует цифра 2 (гликолят меди).

Б) При взаимодействии карбоновых кислот и оксида меди (II) получаются cоли и вода:

.

Таким образом букве Б соответствует цифра 3 (формиат меди).

В) При взаимодействии альдегидов и кислорода (окисление) или получаются карбоновые кислоты, или происходит горение до углекислого газа. В предложенных вариантах углекислого газа нет, значит:

.

Таким образом букве В соответствует цифра 5 (муравьиная кислота).

Г) При взаимодействии формальдегида (метаналя) и фенола образуется фенолформальдегидная смола.

Таким образом букве Г соответствует цифра 4 (фенолформальдегидная смола).

Источник

Adblock
detector
РЕАГИРУЮЩИЕ ВЕЩЕСТВА ПРОДУКТ ВЗАИМОДЕЙСТВИЯ