Меню

Этилен с гидроксидом меди реакция

Этиленгликоль: химические свойства и получение

Этиленгликоль C2H4(OH)2 или CH2(OH)CH2OH, этандиол-1,2 – это органическое вещество, предельный двухатомный спирт .

Общая формула предельных нециклических двухатомных спиртов: CnH2n+2O2 или CnH2n(OН)2

Строение этиленгликоля

В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атом кислорода в спиртах находится в состоянии sp 3 -гибридизации.

В образовании химических связей с атомами C и H участвуют две 2sp 3 -гибридные орбитали, а еще две 2sp 3 -гибридные орбитали заняты неподеленными электронными парами атома кислорода.

Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108 о .

Водородные связи и физические свойства спиртов

Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:

Поэтому этиленгликоль – жидкость с относительно высокой температурой кипения.

Водородные связи образуются не только между молекулами спиртов, но и между молекулами спиртов и воды. Поэтому спирты очень хорошо растворимы в воде. Молекулы спиртов в воде гидратируются:

Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.

Химические свойства этиленгликоля

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии этиленгликоля с растворами щелочей реакция практически не идет, т. к. образующийся алкоголят почти полностью гидролизуется водой.

Читайте также:  Что будет если подогреть медь

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому этиленгликоль не взаимодействует с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Этиленгликоль взаимодействует с активными металлами (щелочными и щелочноземельными).

Например, этиленгликоль взаимодействует с калием с образованием гликолята калия и водорода .

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии этиленгликоля с галогеноводородами группы ОН замещаются на галоген и образуются дигалогеналкан.

Например, этиленгликоль реагирует с бромоводородом.

2.2. Этерификация (образование сложных эфиров)

Многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Например, этиленгликоль реагирует с уксусной кислотой с образованием эфира:

2.4. Взаимодействие с кислотами-гидроксидами

Этиленгликоль взаимодействует и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этиленгликоля с азотной кислотой образуется нитроэтиленгликоль :

3. Дегидратация

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. При высокой температуре (180 о С) протекает внутримолекулярная дегидратация этиленгликоля и образуется соответствующий ацетальдегид.

4. Окисление этиленгликоля

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

4.1. Окисление оксидом меди (II)

Этиленгликоль можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества.

4.2. Окисление кислородом в присутствии катализатора

Этиленгликоль можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.).

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) этиленгликоль окисляется до щавелевой кислоты.

Читайте также:  Как сделать муфельную печь своими руками для плавки меди
Например, при взаимодействии этиленгликоля с перманганатом калия в серной кислоте образуется щавелевая кислота

4.4. Горение этиленгликоля

При сгорании этиленгликоля образуется углекислый газ и вода и выделяется большое количество теплоты.

5. Дегидрирование этаниленгликоля

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования.

Например, при дегидрировании этиленгликоля образуется этандиаль

Получение этиленгликоля

1. Щелочной гидролиз дигалогеналканов

При взаимодействии дигалогеналканов с водным раствором щелочей образуются двухатомные спирты. Атомы галогенов в дигалогеналканах замещаются на гидроксогруппы.

Например, при нагревании 1,2-дихлорэтана с водным раствором гидроксида натрия образуется этиленгликоль

2. Гидрирование карбонильных соединений

Например, при гидрировании этандиаля образуется этиленгликоль

О=CН-CH=O + 2H2 CH2(OH)-CH2OH

3. Гидролиз сложных эфиров

При гидролизе сложных эфиров этиленгликоля и карбоновых кислот образуются этиленгликоль и карбоновая кислота.

4. Мягкое окисление алкенов

Мягкое окисление протекает при низкой температуре в присутствии перманганата калия. При этом раствор перманганата обесцвечивается.

В молекуле алкена разрывается только π-связь и окисляется каждый атом углерода при двойной связи.

При этом образуются двухатомные спирты (диолы).

Источник

Качественные реакции органических соединений

Качественные реакции органических соединений

Таблица. Качественные реакции на органические вещества

Органическое вещество Реактив Наблюдаемая реакция
Алкены, алкины, алкадиены

(этилен, ацетилен, дивинил и др.)

Бромная вода, Br2 (р-р) Обесцвечивание раствора (видеоопыт реакция этилена с бромной водой, ацетилен с бромной)
Алкены, алкины, алкадиены

(этилен, ацетилен, дивинил и др.)

Перманганат калия KMnO4 Обесцвечивание раствора (видеоопыт)
Алкины с тройной связью на конце цепи

(ацетилен С2Н2, пропин и др.)

Аммиачный раствор оксида серебра, [Ag(NH3)2]OH Выпадение осадка соли серебра (видеоопыт)
Многоатомные спирты (этиленгликоль, глицерин и др.) Свежеосажденный гидроксид меди (II) Сu(OH)2 Образование ярко-синего раствора комплекса (видеоопыт)
Фенолы

6Н5ОН — фенол и др.)

Бромная вода, Br2 (р-р) Выпадение белого осадка
Раствор хлорида железа (III) FeCl3 Образование фиолетового раствора
Альдегиды

(СН2О — муравьиный альдегид и др.)

+ глюкоза (и другие углеводы-альдозы)

Источник

Adblock
detector