Меню

Этаналь аммиачный раствор гидроксида меди i

Этаналь

Характеристики и физические свойства этаналя

Он хорошо растворим в воде, спирте и эфире.

Рис. 1. Строение молекулы этаналя.

Таблица 1. Физические свойства этаналя.

Температура плавления, o С

Получение этаналя

Наиболее популярным способом получения этаналя является окисление этанола:

Кроме этого используются и другие реакции:

  • пиролиз кальциевый (бариевых) солей карбоновых кислот:
  • гидратация ацетилена и его гомологов (реакция Кучерова)

Химические свойства этаналя

Типичные реакции, характерные для этаналя – реакции нуклеофильного присоединения. Все они протекают преимущественно с расщеплением:

  1. p-связи в карбонильной группе

— присоединение синильной кислоты

— присоединение гидросульфита натрия

  1. связи С-Н в карбонильной группе

— окисление аммиачным раствором оксида серебра (реакция «серебряного зеркала») – качественная реакция

— окисление гидроксидом меди (II)

Применение этаналя

Этаналь используется в основном для производства уксусной кислоты и в качестве исходного сырья для синтеза многих органических соединений. Кроме этого этаналь и его производные идут на изготовление некоторых лекарств.

Примеры решения задач

Задание Эквимолекулярная смесь ацетилена и этаналя полностью реагирует с 69,6 г Ag2O, растворенного в аммиаке. Определите состав исходной смеси.
Решение Запишем уравнения реакций, указанных в условии задачи:

Рассчитаем количество вещества оксида серебра (I):

По уравнению (2) количество вещества этаналя будет равно 0,15 моль. По условию задачи смесь эквимолекулярна, следовательно, ацетилена тоже будет 0,15 моль.

Найдем массы веществ, составляющих смесь:

Ответ Масса ацетилена равна 3,9 г, этаналя – 6,6 г.
Задание При каталитическом гидрировании 55 г этаналя образовалась карбоновая кислота. Рассчитайте какая масса кислоты была получена.
Решение Запишем уравнение реакции каталитического окисления этаналя:

Вычислим количество вещества этаналя (молярная масса равна 44 г/моль):

n(CH3-C(O)H) = 55 / 44 = 1,25 моль.

Согласно уравнению реакции n(CH3-C(O)H) : n(CH3-COOH) = 1:1, т.е.

Тогда масса уксусной кислоты будет равна (молярная масса – 60 г/моль):

Источник

Лабораторная работа № 6 по теме: » Взаимодействие метаналя (этаналя) с аммиачным раствором оксида серебра (I) и гидроксида меди (II)»

Л/О № 6 «Взаимодействие метаналя (этаналя) с аммиачным раствором оксида серебра ( I ) и гидроксидом меди ( II )».

Цель: изучить свойства метаналя (этаналя) с аммиачным раствором серебра ( I ) и гидроксидом меди ( II ) в лабораторных условиях

Оборудование: виртуальная лаборатория , учебник 10 класса штатив с пробирками, раствор гидроксида натрия, меди,сульфат меди, нитрата cepe6pa(l), раствор аммиака, раствора метаналя (или этаналя), спиртовка, деревянный держатель, дистиллированная вода

Выполнение работы по инструкции.

1. Окисление метаналя (этаналя) оксидом cepe6pa(l). Тщательно вымойте пробирку. Для этого налейте в нее концентрированный раствор гидроксида натрия и несколько минут нагревайте до кипения. Затем гидроксид натрия вылейте и пробирку несколько раз промойте дистиллированной водой. B чистую пробирку налейте 2 мл свежеприготовленного раствора с массовой долей нитрата cepe6pa(l) 0,02 и к нему добавьте по каплям разбавленный раствор аммиака до растворения появившегося осадка. K полученному раствору добавьте несколько капель раствора метаналя (или этаналя). Пробирку поместите в стакан с горячей водой.

2. Окисление метаналя (этаналя) гидроксидом меди(П). B пробирку налейте 1 мл раствора с массовой долей сульфата меди(Н) 0,02 и 1 мл раствора с массовой долей гидроксида натрия 0,1. Полученную смесь нагрейте.

Задания для самостоятельных выводов.

1. Что образуется при окислении альдегидов? Как можно отличить альдегиды от других органических веществ?

2. Почему при взаимодействии альдегидов с гидроксидом меди( II ) появляется желтый, а затем красный осадок? Напишите уравнения соответствующих реакций.

Источник

Химические свойства альдегидов и кетонов

Карбонильные соединения – это органические вещества, молекулы которых содержат карбонильную группу:

Карбонильные соединения делятся на альдегиды и кетоны. Общая формула карбонильных соединений: СnH2nO.

Альдегидами называются органические соединения, содержащие карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода.

Структурная формула альдегидов:

Кетонами называются соединения, в молекуле которых карбонильная группа связана с двумя углеводородными радикалами .

Структурная формула кетонов:

Химические свойства альдегидов и кетонов

В молекулах карбонильных соединений присутствует двойная связь С=О, поэтому для карбонильных соединений характерны реакции присоединения по двойной связи. Присоединение к альдегидам протекает легче, чем к кетонам.

1.1. Гидрирование

Альдегиды при взаимодействии с водородом в присутствии катализатора (например, металлического никеля) образуют первичные спирты, кетоны — вторичные:

1.2. Присоединение воды

При гидратации формальдегида образуется малоустойчивое вещество, называемое гидрат. Оно существует только при низкой температуре.

1.3. Присоединение спиртов

При присоединении спиртов к альдегидам образуются вещества, которые называются полуацетали.

В качестве катализаторов процесса используют кислоты или основания.

Полуацетали существует только при низкой температуре.

Полуацетали это соединения, в которых атом углерода связан с гидроксильной и алкоксильной (-OR) группами.

Полуацеталь может взаимодействовать с еще одной молекулой спирта в присутствии кислоты. При этом происходит замещение полуацетального гидроксила на алкоксильную группу OR’ и образованию ацеталя:

1.4. Присоединение циановодородной (синильной) кислоты

Карбонильные соединения присоединяют синильную кислоту HCN. При этом образуется гидроксинитрил (циангидрин):

2. Окисление альдегидов и кетонов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении альдегиды превращаются в карбоновые кислоты.

Альдегид → карбоновая кислота

Метаналь окисляется сначала в муравьиную кислоту, затем в углекислый газ:

Формальдегид→ муравьиная кислота→ углекислый газ

Вторичные спирты окисляются в кетоны:

в торичные спирты → кетоны

Типичные окислители — гидроксид меди (II), перманганат калия KMnO4, K2Cr2O7, аммиачный раствор оксида серебра (I).

Кетоны окисляются только при действии сильных окислителей и нагревании.

2.1. Окисление гидроксидом меди (II)

Происходит при нагревании альдегидов со свежеосажденным гидроксидом меди, при этом образуется красно-кирпичный осадок оксида меди (I) Cu2O. Это — одна из качественных реакций на альдегиды.

Например, муравьиный альдегид окисляется гидроксидом меди (II)

HCHO + 2Cu(OH)2 = 2Cu + CO2 + 3H2O

Чаще в этой реакции образуется оксид меди (I):

2.2. Окисление аммиачным раствором оксида серебра

Альдегиды окисляются аммиачным раствором оксида серебра (реакция «серебряного зеркала»).

Поскольку раствор содержит избыток аммиака, продуктом окисления альдегида будет соль аммония карбоновой кислоты.

Например, при окислении муравьиного альдегида аммиачным раствором оксида серебра (I) образуется карбонат аммония

Например, при окислении уксусного альдегида аммиачным раствором оксида серебра образуется ацетат аммония

Образование осадка серебра при взаимодействии с аммиачным раствором оксида серебра — качественная реакция на альдегиды.

Упрощенный вариант реакции:

2.3. Жесткое окисление

При окислении под действием перманганатов или соединений хрома (VI) альдегиды окисляются до карбоновых кислот или до солей карбоновых кислот (в нейтральной среде). Муравьиный альдегид окисляется до углекислого газа или до солей угольной кислоты (в нейтральной среде).

Например, при окислении уксусного альдегида перманганатом калия в серной кислоте образуется уксусная кислота

Кетоны окисляются только в очень жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов.

Реакция протекает с разрывом С–С-связей (соседних с карбонильной группой) и с образованием смеси карбоновых кислот с меньшей молекулярной массой или СО2.

Карбонильное соединение/ Окислитель KMnO4, кислая среда KMnO4, H2O, t
Метаналь СН2О CO2 K2CO3
Альдегид R-СНО R-COOH R-COOK
Кетон R-COOH/ СО2 R-COOK/ K2СО3

2.4. Горение карбонильных соединений

При горении карбонильных соединений образуются углекислый газ и вода и выделяется большое количество теплоты.

Например, уравнение сгорания метаналя:

3. Замещение водорода у атома углерода, соседнего с карбонильной группой

Карбонильные соединения вступают в реакцию с галогенами, в результате которой получается хлорзамещенный (у ближайшего к карбонильной группе атома углерода) альдегид или кетон.

Например, при хлорировании уксусного альдегида образуется хлорпроизводное этаналя

Полученное из ацетальдегида вещество называется хлораль. Продукт присоединения воды к хлоралю (хлоральгидрат) устойчив и используется как лекарство.

4. Конденсация с фенолами

Формальдегид может взаимодействовать с фенолом. Катализатором процесса выступают кислоты или основания:

Дальнейшее взаимодействие с другими молекулами формальдегида и фенола приводит к образованию фенолоформальдегидных смол и воды:

Фенол и формальдегид вступают в реакцию поликонденсации.

Поликонденсация — это процесс соединения молекул в длинную цепь (полимер) с образованием побочных продуктов с низкой молекулярной массой (вода или др.).

5. Полимеризация альдегидов

Полимеризация характерна в основном для легких альдегидов. Для альдегидов характерна линейная и циклическая полимеризация.

Например, в растворе формалина (40 %-ного водного раствора формальдегида) образуется белый осадок полимера формальдегида, который называется полиформальдегид или параформ:

Источник

Читайте также:  Медь сплавы сколько стоит
Adblock
detector