Меню

Элементы подгруппы меди общая характеристика

Подгруппа меди

Подгру́ппа ме́ди — химические элементы 11-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы побочной подгруппы I группы) [1] . В группу входят переходные металлы, из которых традиционно изготавливают монеты: медь Cu, серебро Ag и золото Au. На основании строения электронной конфигурации, к этой же группе относится и рентгений Rg, но в «монетную группу» он не попадает (это недолго живущий трансактинид с периодом полураспада 3.6 сек). Название монетные металлы официально не применяется к 11 группе элементов, поскольку для изготовления монет используются и другие металлы, такие как алюминий, свинец, никель, нержавеющая сталь и цинк.

Содержание

История

Все элементы этой группы, кроме рентгения, известны человечеству с доисторических времён, поскольку все они встречаются в природе в металлической форме, и для их производства не требуются сложные металлургические процессы.

Свойства

Все элементы подгруппы являются относительно химически инертными металлами. Характерны также высокие значения плотности, но оносительно небольшие температур плавления и кипения, высокая тепло- и электропроводность.

Свойства металлов подгруппы меди [2]

Атомный
номер
Название,
символ
Электронная
конфигурация
Степени
окисления
p,
г/см³
tпл,
°C
tкип,
°C
29 Медь Cu [Ar] 3d 10 4s 1 0, +1, +2 8,96 [3] [4] 1083 [3] [4] 2543 [3] [4]
47 Серебро Ag [Kr] 4d 10 5s 1 0, +1, +3 10,5 [5] 960,8 [5] 2167 [5]
79 Золото Au [Xe] 4f 14 5d 10 6s 1 0, +1, +3 19,3 [6] 1063,4 [6] 2880 [6]

Особенностью элементов подгруппы является наличие заполненного предвнешнего -подуровня, достигаемое за счёт перескока электрона с ns-подуровня. Причина такого явления заключается в высокой устойчивости полностью заполненного d-подуровня. Эта особенность обусловливает химическую инертность простых веществ, их химическую неактивность, поэтому золото и серебро называют благородными металлами. [7]

Применения

Эти металлы, особенно серебро, имеют необычные свойства, которые придают им важное значение для промышленного применения, помимо их значения в качестве денежной и декоративной ценности. Они являются отличными проводниками электричества, самыми лучшими среди всех металлов. Серебро также является самым лучшим теплопроводящим элементом и самым лучшим отражателем света, а также имеет такое необычное свойство, как чернение, образование на его поверхности тёмного слоя, при этом электроводность его не ухудшается.

Медь широко используется для электрических соединений в схемотехниеке. Иногда в особо точном оборудовании электрические контакты изготавливают из золота ввиду его высокой коррозийной стойкости. Серебро также широко используется в критически важных случаях для изготовления электрических контактов. Также оно используется в фотографии (потому что под действием света из нитрата серебра происходит выпадение серебра), сельском хозяйстве, медицине, аудиофилии и в научных приложениях.

Золото, серебро и медь являются довольно мягкими металлами, поэтому при ежедневном использовании в качестве монет происходит быстрый выход их из строя, драгоценные металлы легко истираются в процессе применения. Для нумизматических функций эти металлы должны быть легированы другими металлами, чтобы повысить их износостойкость.

Золотые монеты: золотые монеты, как правило, производятся из сплава с 90 % золота (например, монеты США до 1933 г.), или чистотой 22 карат (92 % золота, как например, современные коллекционные монеты и крюгерранд), остальное медь и серебро. Весовые золотые монеты содержат до 99,999 % золота (например, в канадских монетах серии «Кленовый лист»).

Серебряные монеты: серебряные монеты содержат, как правило, 90 % серебра (как, например, чеканились монеты США до 1965 г., которые были распространены во многих странах), или, как в стерлинге, 92,5 % серебра, как в монетах Британского Содружества до 1967 г. и других чеканках из серебра, остальное составляет медь.

Медные монеты: медные монеты часто имеют весьма высокую чистоту, около 97 %, и, как правило, легированы небольшим количеством цинка и олова.

Инфляция привела к снижению номинальной стоимости монет, они уже не являются той твёрдой валютой, которой были исторически. Это привело к тому, что современные монеты стали делать из цветных металлов: мельхиор (медь и никель в пропорции 80:20, черного цвета), никель-латунь (медь, никель и цинк в пропорции 75:5:20, золотистого цвета), марганец-латунь (медь, цинк, марганец и никель), бронза, а также просто сталь с гальванопокрытием.

Источник

Подгруппа меди

Особенности атомных структур элементов побочных подгрупп

В данной главе мы будем рассматривать элементы побочных подгрупп I—VIII группы. Все они являются элементами больших периодов.
Элементы этих подгрупп имеют свои особенности в строении атомов. У элементов главных подгрупп происходит постепенное завершение внешнего электронного слоя, который содержит только s— и р-оболочки. У элементов же побочных подгрупп предвнешний слой находится в процессе завершения, а внешний слой при этом, как правило, сохраняет неизменно 2 электрона. На предвнешнем слое возникает и заполняется d-оболочка, состоящая из 5 d-орбиталей. На каждой орбитали 2 электрона, поэтому заполнение d-орбиталей происходит последовательно у 10 элементов, расположенных по возрастанию порядковых номеров. Элементы побочных подгрупп всех групп, за исключением I и II, принадлежат к числу d-элементов.

Читайте также:  Пайка меди газовым баллончиком

Валентными у элементов побочных подгрупп являются электроны, расположенные как во внешнем слое на s-орбиталях, так и на d-орбиталях более глубокого предвнешнего слоя. Таким образом, для этих элементов характерно образование различного числа валентных связей. Легче всего, разумеется, участвуют в образовании химической связи электроны внешнего слоя; их в атоме один или два. Такое строение атома типично для металла, поэтому элементы побочных подгрупп обладают обычно металлическими свойствами.

■ 1 . Начертите схемы строения атомов скандия, титана, ниобия. (См. Ответ)

Укажите электронные конфигурации внешнего и предвнешнего электронных слоев их атомов. Изобразите размещение электронов внешнего и предвнешнего слоев по орбиталям.
2. В чем отличие структуры внешнего электронного слоя атомов элементов главных подгрупп от атомов элементов побочных подгрупп.
3. Какими свойствами должны обладать элементы побочных подгрупп в связи с строением их атомов.
4. Сколько электронов вмещает d-оболочка электронного слоя? (См. Ответ)

Подгруппа меди

Начнем рассмотрение элементов побочных подгрупп с подгруппы меди. К элементам подгруппы меди относятся медь Сu, серебро Ag и золото Аu, расположенные в побочной подгруппе I группы. Распределение электронов по энергетическим уровням у этих элементов приведено в табл. 22.

Распределение электронов по энергетическим уровням атомов элементов подгрупп меди.Таблица 22

Радиусы атомов элементов побочной подгруппы значительно меньше радиусов атомов элементов главной подгруппы, поэтому электрон внешнего электронного слоя с большим трудом отрывается от атома. Как видно из табл. 22, эти элементы имеют сходное строение не только внешнего, но и предвнешнего слоя, и мы вправе ожидать от них большого сходства химических свойств.
В табл. 23 приведены физические свойства металлов подгруппы меди.
■ 5. Сравните радиусы атомов щелочных металлов и металлов подгруппы меди тех же периодов. Какой вывод можно сделать?
6. Почему у элементов подгруппы меди электрон внешнего слоя удерживается прочнее, чем в атомах щелочных металлов?
7. К какой группе металлов по плотности следует отнести металлы подгруппы меди? (См. Ответ)

Медь Сu

Химический знак Сu, атомный вес 63,54. Медь — типичный металл, поэтому ее атомы связаны между собой металлической связью. Электронная конфигурация предвнешнего и внешнего электронных слоев меди выглядит следующим образом: 3s 2 3p 6 3d 10 4s 1 .

По внешнему виду медь — вещество красного цвета с характерным металлическим блеском. Медь — довольно мягкий металл, однако намного тверже, чем щелочные.
Следует отметить высокую пластичность меди, которую она проявляет не только в нагретом, но и в холодном состоянии. Благодаря своей мягкости и пластичности медь может быть подвергнута холодной обработке. Отсюда широкое использование этого металла для изготовления художественных изделий при помощи чеканки. Не только сама медь, но и все металлы этой подгруппы обладают высокой пластичностью.

Медь что это такое

Один из лучших проводников тепла и электричества, однако для использования ее в этих целях медь обычно хорошо очищают от примесей других металлов, так как даже от незначительных загрязнений ее электропроводность сильно уменьшается.

Химические свойства меди и ее аналогов очень отличаются от свойств щелочных металлов, расположенных в главной подгруппе I группы. Так, они располагаются в ряду напряжений после водорода. Степень окисления меди в окислительно-восстановительных реакциях +1 или +2. Других степеней окисления медь обычно не проявляет.
Медь довольно легко сплавляется с другими металлами, образуя ряд сплавов, наиболее распространенными из которых являются бронза (сплав, состоящий из меди и олова) и латунь (сплав меди и цинка).

При обычной температуре медь постепенно вступает во взаимодействие с кислородом, двуокисью углерода и влагой воздуха, превращаясь в основной карбонат меди. Этот процесс протекает очень медленно и объясняет причину, по которой изделия из меди с течением времени покрываются зеленым налетом.
При прокаливании на газовой горелке медь покрывается черным налетом окиси меди СuО. Нагретая медь довольно легко вступает во взаимодействие с хлором, образуя хлорид меди (II), и с некоторыми другими неметаллами.
С разбавленными кислотами медь обычно в реакции не вступает, так как не может вытеснить водород, но с разбавленной азотной кислотой реагирует без вытеснения водорода, однако с выделением окиси азота. С концентрированными серной и азотной кислотой медь также вступает в окислительно-восстановительную реакцию, которая также протекает без вытеснения водорода. Во всех названных реакциях медь в основном проявляет свою высшую валентность II. Соединения одновалентной меди получить значительно сложнее.

■ 8. Какова электронная конфигурация внешнего и предвнешнего слоя атома меди? (См. Ответ)
9. Перечислите физические свойства меди и укажите, где они находят себе применение.
10. Напишите следующие уравнения реакций, характеризующих химические свойства меди: а) взаимодействие с кислородом; б) взаимодействие с хлором; в) взаимодействие с водой, кислородом и двуокисью углерода воздуха; г) с концентрированными серной и азотной кислотами; д) с разбавленной азотной кислотой.
Все уравнения рассмотрите с точки зрения окислительно-восстановительных процессов. Если реакция ионная, запишите уравнение в полной и сокращенной ионной форме.
11. Для получения медного купороса CuSO4-5H2O медный лом прокаливают на воздухе и получившийся продукт обрабатывают 70% серной кислотой. Сколько меди и раствора серной кислоты израсходуется на получение 125 т медного купороса? Напишите уравнения протекающих при этом реакций.
12 Приведите все известные вам способы получения хлорида меди (II), сульфата меди (II), нитрата меди (II), исходя из чистой меди. Уравнения реакций записывайте в ионной форме, а в окислительно-восстановительных указывайте окислитель и восстановитель. Для реакций можно использовать дополнительно любые вещества. Процессы можно вести с любым количеством промежуточных веществ.

13. Почему металлическую медь можно получить электролизом раствора хлорида, а металлический натрий — нельзя. (См. Ответ)

Соединения меди

Медь образует два ряда соединений—соединения двухвалентной и одновалентной меди.
Соединения двухвалентной меди — это СuО (окись меди), гидроокись меди и наиболее распространенные соли.
Окись меди представляет собой твердое вещество черного цвета, поступает в лаборатории в виде порошка или гранул (гранулированная окись меди). Ее получают обычно из металлической меди путем прокаливания на воздухе, а также разложением солей, например:
Cu2(OH)2CO3 = 2CuO + Н2O + CO2
Окись меди — основной окисел, при обычных условиях весьма устойчивый. При небольшом нагревании окись меди довольно легко восстанавливается водородом или углеродом до металлической меди:
СuО + С = Сu + СО СuО + Н2 = Сu + Н2O
С водой окись меди никогда не реагирует, поэтому соответствующее ей основание — гидроокись меди Си(ОН)4— никогда не образуется путем взаимодействия окисла с водой. Гидроокись меди — слабое нерастворимое основание, легко вступает во взаимодействие с кислотами с образованием солей:
Сu(ОН)2 + H2SO4 = CuSO4 + 2Н2O
Cu(OH)2 + 2Н + + SO 2- = Cu 2+ + SO 2 4 — + 2H2O
Cu(OH)2 + 2H + = Cu 2+ + 2H2O
Взаимодействие со щелочами при некоторых условиях возможно, но совершенно нетипично, хотя и свидетельствует об очень слабо выраженных амфотерных свойствах. Гидроокись меди легко растворяется в аммиаке, образуя раствор ярко-синего цвета. Этот раствор нередко применяется в органической химии для разного рода качественных реакций, а также иногда для обработки целлюлозы.

Гидроокись меди легко разлагается даже при простом хранении на воздухе:
Cu(OH)2 = СuО + Н20
При этом она чернеет, превращаясь постепенно в черную окись меди.

Из солей меди наиболее распространены медный купорос CuSO4 · 5H2O, хлорид меди СuСl2 · 2Н2O, нитрат меди Cu(NO3)2 · 3H2O, сульфид меди CuS. Кристаллогидраты медных солей при нагревании довольно легко отдают кристаллизационную воду, теряя свою окраску. Обычно кристаллические медные соли и их растворы имеют красивую голубую окраску. Медные соли используют для борьбы с сельскохозяйственными вредителями, в текстильной промышленности для изготовления красителей.
В природе медь встречается в виде минерала — самородной меди, однако чаще ее добывают в виде сульфидов (важнейшие—халькозин Cu2S, халькопирит CuFeS2 ит.д). Полученную из них медь очищают электролизом (рафинируют), а затем используют для изготовления проводов медных сплавов и других изделий.

■ 14. Как осуществить ряд превращений: (См. Ответ)
Сu → Cu(NO3)2 → CuO → Cu(OH)2 → CuSO4 → CuCl2.?
15. Окись меди прокалили в токе водорода, затем обработали концентрированной азотной кислотой до прекращения выделения бурого газа, далее, добавив щелочи, получили студенистый голубой осадок. Какие химические процессы происходили? Напишите их уравнения в молекулярной и ионных формах.
16. Даны окись меди, вода, серная кислота, нитрат серебра. Как, не имея других веществ, получить медь, нитрат меди, сульфат меди.
17. Смесь карбоната и нитрата меди подвергли прокаливанию. Что останется в реакционном сосуде после прокаливания? Каков состав выходящей смеси газов?
18. Смесь меди с окисью меди обработали 30% азотной кислотой. При этом выделилось 2,8 л окиси азота. Известно, что в составе смеси медь составляет 40% Какой объем раствора азотной кислоты был израсходован на реакцию? (См. Ответ)

Серебро и золото

Серебро Ag и золото Аu — аналоги меди, но относятся к числу так называемых благородных металлов. Такое название возникло из-за того, что эти металлы обладают значительной химической стойкостью к окислению.

Электронные конфигурации внешних и предвиешних слоев атомов серебра и золота:
Ag 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 1

Au 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 10 6s 1 .
Серебро и золото — наиболее ковкие металлы, причем на первом месте по мягкости и ковкости стоит золото, а серебро — на втором. Однако по электро- и теплопроводности на первом месте находится серебро. Цвет у этих металлов различный. Серебро белого цвета, а золото — желтого.
Как уже было сказано, серебро и золото устойчивы к окислению и длительное время могут сохраняться, не изменяя внешнего вида. В связи с этим, а также благодаря мягкости они легко шлифуются, полируются и потому используются для разного рода поделок и украшений. Золото применяют в стоматологии для изготовления зубных коронок. Серебро также используют в медицине для изготовления некоторых инструментов. Гораздо чаще, чем чистые металлы, применяют их сплавы с медью, обладающие антикоррозийной стойкостью, но благодаря меди — большей твердостью и лучшими механическими свойствами.

Несмотря на сравнительную химическую устойчивость, серебро и золото могут подвергаться воздействию некоторых реактивов. Серебро, например, может реагировать с азотной кислотой, как с разбавленной, так и с концентрированной:
Ag + HNО3 → (Ag +1 ; N +4 ) (конц.)

Ag + HNО3 → (Ag +1 ; N +2 ) (разб.)

а также с концентрированной серной кислотой:

• Продукты реакции определите сами и найдите коэффициенты на основе электронного баланса.
Золото не реагирует с азотной кислотой. Отсутствие реакции при испытании золотого предмета азотной кислотой является подтверждением его состава. Однако смесь концентрированных азотной и соляной кислот под названием «царская водка» окисляет золото (см. § 72).

Ионы серебра Ag+1, попадая в раствор даже в ничтожно малых количествах, оказывают бактерицидное действие. Именно поэтому, например, очень долгое время может сохраняться так называемая «святая вода», которую священнослужители держат в серебряной посуде.
Из окислов следует отметить окись серебра Ag2О — вещество черного цвета, растворимое в аммиаке и проявляющее окислительные свойства особенно по отношению к некоторым органическим веществам.
Галогениды серебра, кроме фторида, в воде нерастворимы и несколько различаются между собой по цвету: хлорид — белый, бромид — желтоватый, иодид — желтый. Хлорид легко растворим в аммиаке. Бромид серебра особенно чувствителен к свету, как уже говорилось в § 42. Нитрат серебра AgNО3 широко применяется в химических лабораториях, а также в медицине в виде так называемого ляписа.

Соединения золота не имеют особого практического значения, поэтому мы на них останавливаться не будем.
В природе золото встречается в основном в самородном состоянии в виде песка, самородков. Серебро чаще всего встречается в виде сульфида Ag2S, получившего название «серебряный блеск». Соединения серебра часто сопутствуют другим металлам — меди, свинцу, сурьме и др.

■ 19. Почему при лечении зубов применяют в основном серебро и золото? (См. Ответ)
20. Почему серебро и золото причисляют к благородным металлам? Перечислите возможно более полно физические свойства этих металлов
21. Объясните процесс растворения золота в «царской водке» и напишите уравнения реакций.
22. Перечислите области применения серебра и золота. (См. Ответ)

Статья на тему Подгруппа меди

Источник

Adblock
detector