Меню

Электролиз раствора сульфата меди с угольным анодом

Схема электролиза водного раствора соли

Задача 590.
Составить схемы электролиза водного раствора хлорида цинка, если: а) анод цинковый; б) анод угольный.
Решение:
ZnCl2 ⇔ Zn 2+ + 2Cl —
Стандартный электродный потенциал системы Zn 2+ + 2 = Zn 0 (-0,76 В) значительно отрицательнее потенциала водородного электрода в нейтральной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением газообразного водорода:

2H2O + 2 ⇔ H2↑ + 2ОH —

а ионы цинка Zn 2+ , приходящие к катоду, будут накапливаться в прилегающей к нему части раствора (катодное пространство).

На аноде будет происходить электрохимическое окисление цинка – материала анода, поскольку, отвечающий системе Zn 0 + 2 ⇔ Zn 2+ (-0,76 В) значительно ниже 2Cl — — 2 ⇔ Cl2 (+1,36 В). Ионы хлора, движущиеся к аноду, будут накапливаться в анодном пространстве. Таким образом, на аноде будет происходить растворение цинка — материал анода, а на катоде – выделение газообразного водорода. В анодном пространстае будет накапливаться хлорид цинка, а в катодном пространстве ионы цинка, соединяясь с гидроксид-ионами, образуют малорастворимое соединение Zn(OH)2.

Уравнения электродных процессов:

А(+): Zn 0 — 2e ⇔ Zn 2+
К(-): 2H2O + 2 ⇔ H2↑ + 2ОH —

Суммарное уравнение катодного и анодного процессов будет иметь вид:

2H2O + Zn 0 ⇔ H2↑ + 2OH- + Zn 2+
катод анод

Таким образом, при электролизе ZnCl2 с цинковым анодом на катоде будет наблюдаться выделение газообразного водорода и в осадок выпадает гидроксид цинка, на аноде будет происходить растворение материала анода (цинк) и будут накапливаться ионы цинка и хлорид-ионы.

б) При электролизе ZnCl2 с угольным анодом будут происходить следующие процессы:

на катоде: 2H2O + 2 ⇔ H2↑ + 2ОH — ;
на аноде: 2Cl — — 2 ⇔ Cl2,

хотя стандартные электродные потенциалы системы 2H2O — 4 ⇔ O2↑ + 4Н + и 2Cl — — 2 ⇔ Cl2, соответственно, равны 1,23В и 1,36В. Объясняется это тем, что происходит перенапряжение системы на аноде.

Таким образом, при электролизе раствора хлорида цинка с угольным электродом на катоде будет будет наблюдаться выделение газообразного водорода и в катодном пространстве будет выпадать осадок гидроксида цинка, а на аноде будет наблюдаться выделение газообразного хлора.

Задача 691.
Составить схемы электролиза водного раствора сульфата меди, если: а) анод медный; б) анод угольный.
Решение:
CaSO4 ⇔ Ca 2+ + SO4 2-
Стандартный электродный потенциал системы Cu 2+ + 2 ⇔ Cu 0 (+0,34 В) значительно положительнее потенциала водородного электрода в нейтральной среде (-0,41В). Поэтому на катоде будет происходить электрохимическое восстановление ионов меди:

Cu 2+ + 2 ⇔ Cu 0

На аноде будет происходить электрохимическое окисление меди – материала анода, поскольку, отвечающий системе Cu 2+ — 2 ⇔ Cu (+0,34В) значительно ниже 2SO4 2- + 2 ⇔ S2O8 2- (+2,01В). Ионы SO4 2- , движущиеся к аноду, будут накапливаться в анодном пространстве. Таким образом, на аноде будет происходить растворение меди — материал анода, а на катоде – выделение газообразного водорода. В анодном пространстае будет накапливаться сульфат меди, а в катодном пространстве ионы меди, соединяясь с гидроксид-ионами, образуют малорастворимое соединение Cu(OH)2.

Уравнения электродных процессов:

А(+): Cu 0 — 2e ⇔ Cu 2+
К(-): Cu 2+ + 2e ⇔ Cu 0

Суммарное уравнение катодного и анодного процессов будет иметь вид:

2Cu 0 + Cu 2+ = Cu 2+ + Cu 0
анод катод

Таким образом, при электролизе CuSO4 на катоде будет наблюдаться выделение газообразного водорода и в осадок выпадает гидроксид меди, на аноде будет происходить растворение материала анода (медь) и будут накапливаться ионы меди и сульфат-ионы.

б) При электролизе CuSO4 с угольным анодом будут происходить следующие процессы ( стандартный электродный потенциал системы 2H2O — 4 ⇔ O2↑ + 4OH — и 2SO4 2- + 2 ⇔ S2O8 2- , соответственно, равны 1,23 В и 2,01 В ):

на катоде: 2|4|Cu 2+ + 2 ⇔ Cu 0
на аноде: 1|2|2H2O — 4 ⇔ O2↑ + 4Н + .

Суммарное уравнение катодного и анодного процессов будет иметь вид:

2H2O + 2Cu 2+ ⇔ О2 ↑ + 4Н + + 2Cu (ионно-молекулярная форма);
анод катод
2CuSO4 + 2H2O → 2H2SO4 + O2↑ + 2Cu ( молекулярная форма).

Читайте также:  Вага для соединения проводов медь алюминий

Таким образом, при электролизе раствора сульфата меди с угольным анодом на аноде будет наблюдаться выделение газообразного кислорода, и в анодном же пространстве будет накапливаться сульфат-ионы, которые с ионами водорода создают кислую среду, будет накапливаться серная кислота (2H + + SO4 2- = H2SO4); на катоде будет откладываться металлическая медь.

Источник

Задание 1

Составьте схемы электролиза (с использованием угольных электродов) расплавов и растворов следующих солей: KCl, CuSO4, KI.

Электролиз раствора хлорида калия:
KCl ⟶ K + + Cl —
K(-): 2H2O + 2ē ⟶ H2↑ + 2OH —
А(+): 2Cl — — 2ē ⟶ Cl2
Суммарное уравнение: 2KCl + 2H2O электролиз ⟶ H2↑ + Cl2↑ + 2KOH

Электролиз расплава хлорида калия:
KCl ⟶ K + + Cl —
K(-): K + + 1ē ⟶ K
А(+): 2Cl — — 2ē ⟶ Cl2
Суммарное уравнение: 2KCl электролиз ⟶ 2K + Cl2

Электролиз раствора сульфата меди (II):
CuSO4 ⟶ Cu 2+ + SO4 2-
K(-): Cu 2+ + 2ē ⟶ Cu
А(+): 2H2O — 4ē ⟶ O2↑ + 4H +
Суммарное уравнение: 2CuSO4 + 2H2O электролиз ⟶ 2Zn + 2H2SO4 + O2

Электролиз расплава сульфата меди (II):
CuSO4 ⟶ Cu 2+ + SO4 2-
K(-): Cu 2+ + 2ē ⟶ Cu
А(+): 2SO4 2- — 4ē ⟶ 2SO3↑ + O2
Суммарное уравнение: 2CuSO4 электролиз ⟶ 2Cu + 2SO3↑ + O2

Электролиз раствора иодида калия:
KI ⟶ K + + I —
K(-): 2H2O + 2ē ⟶ H2↑ + 2OH —
А(+): 2I — — 2ē ⟶ I2
Суммарное уравнение: 2KI + 2H2O электролиз ⟶ H2↑ + I2 + 2KOH

Электролиз расплава иодида калия:
KI ⟶ K + + I —
K(-): K + + 1ē ⟶ K
А(+): 2I — — 2ē ⟶ I2
Суммарное уравнение: 2KCl электролиз ⟶ 2K + I2

Источник

1. Электролиз расплава хлорида меди (II).

Электродные процессы могут быть выражены полуреакциями:

на катоде K(-): Сu 2+ + 2e = Cu 0

Общая реакция электрохимического разложения вещества представляет собой сумму двух электродных полуреакций, и для хлорида меди она выразится уравнением:

При электролизе щелочей и солей оксокислот на аноде выделяется кислород:

2. Электролиз расплава хлорида калия:

Электролиз растворов

Совокупность окислительно-восстановительных реакций, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.

источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является «восстановителем».

происходит отдача электронов анионами, поэтому анод является «окислителем».

При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.

При проведении электролиза с использованием инертного (нерасходуемого)

анода (например, графита или платины), как правило, конкурирующими являются два окислительных и два восстановительных процесса:

— окисление анионов и гидроксид-ионов,

— восстановление катионов и ионов водорода.

При проведении электролиза с использованием активного (расходуемого)

анода процесс усложняется и конкурирующими реакциями на электродах являются:

— окисление анионов и гидроксид-ионов, анодное растворение металла — материала анода;

— восстановление катиона соли и ионов водорода, восстановление катионов металла, полученных при растворении анода.

При выборе наиболее вероятного процесса на аноде и катоде следует исходить из положения, что будет протекать та реакция, для которой требуется наименьшая затрата энергии. Кроме того, для выбора наиболее вероятного процесса на аноде и катоде при электролизе растворов солей с инертным электродом используют следующие правила:

1. На аноде могут образовываться следующие продукты:

а) при электролизе растворов, содержащих в своем составе анионы SO4 2- , NО — 3, РО4 3- , а также растворов щелочей на аноде окисляется вода и

б) при окислении анионов Сl — , Вr — , I — выделяются соответственно

2. На катоде могут образовываться следующие продукты:

а) при электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений левее Аl 3+ , на катоде восстанавливается вода и

б) если ион металла расположен в ряду напряжений правее водорода, то на катоде

в) при электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений между Al + и Н + , на катоде могут протекать конкурирующие процессы как

восстановления катионов, так и выделения водорода

Пример: Электролиз водного раствора нитрата серебра на инертных электродах

Диссоциация нитрата серебра:

Читайте также:  Сколько стоит 1 кг меди в россии 2020

При электролизе водного раствора АgNО3 на катоде происходит восстановление ионов Аg + , а на аноде — окисление молекул воды:

Составьте схемы электролиза водных растворов: а) сульфата меди; б) хлорида магния; в) сульфата калия.

Во всех случаях электролиз проводится с использованием угольных электродов.

Пример: Электролиз водного раствора хлорида меди на инертных электродах

В растворе находятся ионы Си 2+ и 2Сl — , которые под действием электрического тока направляются к соответствующим электродам:

На катоде выделяется металлическая медь, на аноде — газообразный хлор.

Если в рассмотренном примере электролиза раствора CuCl2 в качестве анода взять медную пластинку, то на катоде выделяется медь, а на аноде, где происходят процессы окисления, вместо разрядки ионов Сl 0 и выделения хлора протекает окисление анода (меди).

В этом случае происходит растворение самого анода, и в виде ионов Сu 2+ он переходит в раствор.

Электролиз CuCl2 с растворимым анодом можно записать так:

Электролиз растворов солей с растворимым анодом сводится к окислению материала анода (его растворению) и сопровождается переносом металла с анода на катод. Это свойство широко используется при рафинировании (очистке) металлов от загрязнений.

Пример: Электролиз водного раствора хлорида магния на инертных электродах

Диссоциация хлорида магния в водном растворе:

Ионы магния не могут восстанавливаться в водном растворе

Пример: Электролиз водного раствора сульфата меди на инертных электродах

В растворе сульфат меди диссоциирует на ионы:

Ионы меди могут восстанавливаться на катоде в водном растворе.

Сульфат-ионы в водном растворе не окисляются, поэтому на аноде будет протекать окисление воды.

Электролиз водного раствора соли активного металла и кислородсодержащей кислоты (К24) на инертных электродах

Пример: Диссоциация сульфата калия в водном растворе:

Ионы калия и сульфат-ионы не могут разряжаться на электродах в водном растворе, следовательно,

на катоде будет протекать восстановление

(осуществляется при перемешивании),

H2O 2H2 + O2

Если пропускать электрический ток через водный раствор соли активного металла и кислородсодержащей кислоты, то ни катионы металла, ни ионы кислотного остатка не разряжаются.

На катоде выделяется водород, а на аноде — кислород, и электролиз сводится к электролитическому разложению воды.

Электролиз расплава гидроксида натрия

проводится всегда в присутствии инертного электролита (для увеличения электропроводности очень слабого электролита — воды):

Закон Фарадея

Зависимость количества вещества, образовавшегося под действием электрического тока, от времени, силы тока и природы электролита может быть установлена на основании обобщенного закона Фарадея:

— масса образовавшегося при электролизе вещества (г);

— эквивалентная масса вещества (г/моль);

— молярная масса вещества (г/моль);

— количество отдаваемых или принимаемых электронов;

— продолжительность процесса (с);

— константа Фарадея, характеризующая количество электричества, необходимое для выделения 1 эквивалентной массы вещества

(F = 96 500 Кл/моль = 26,8 Ач/моль).

Гидролиз неорганических соединений

Взаимодействие ионов соли с водой, приводящее к образованию молекул слабого электролита, называют

Если рассматривать соль как продукт нейтрализации основания кислотой, то можно разделить соли на четыре группы, для каждой из которых гидролиз будет протекать по-своему.

1. Соль, образованная сильным основанием и сильной кислотой KBr, NaCl, NaNO3)

, гидролизу подвергаться не будет, так как в этом случае слабый электролит не образуется. Реакция среды остается нейтральной.

2. В соли, образованной слабым основанием и сильной кислотой FeCl2, NH4Cl, Al2(SO4)3, MgSO4)

гидролизу подвергается катион:

Fe 2+ + 2Cl — + H + + OH — → FeOH + + 2Cl — + Н +

В результате гидролиза образуется слабый электролит, ион H + и другие ионы. рН раствора

3. Соль, образованная сильным основанием и слабой кислотой (КClO, K2SiO3, Na2CO3, CH3COONa)

подвергается гидролизу по аниону, в результате чего образуется слабый электролит, гидроксид ион и другие ионы.

2K + +SiO3 2- + Н + + ОH — → НSiO3 — + 2K + + ОН —

рН таких растворов > 7 ( раствор приобретает щелочную реакцию).

гидролизуется и по катиону, и по аниону. В результате образуется малодиссоциирующие основание и кислота. рН растворов таких солей зависит от относительной силы кислоты и основания.

Читайте также:  Совместимость меди с алюминием

Алгоритм написания уравнений реакций гидролиза соли слабой кислоты и силиного основания

Различают несколько вариантов гидролиза солей:

1. Гидролиз соли слабой кислоты и сильного основания:

Пример 1. Гидролиз ацетата натрия.

или CH3COO – + Na + + H2O ↔ CH3COOH + Na + + OH –

Так как уксусная кислота слабо диссоциирует, ацетат-ион связывает ион H + , и равновесие диссоциации воды смещается вправо согласно принципу Ле Шателье.

В растворе накапливаются ионы OH — ( pH >7)

Если соль образована многоосновной кислотой, то гидролиз идет ступенчато.

Если соль образована многоосновной кислотой, то гидролиз идет ступенчато.

Например, гидролиз карбоната:

Практическое значение обычно имеет только процесс, идущий по первой ступени, которым, как правило, и ограничиваются при оценке гидролиза солей.

Равновесие гидролиза по второй ступени значительно смешено влево по сравнению с равновесием первой ступени, поскольку на первой ступени образуется более слабый электролит (HCO3 – ), чем на второй (H2CO3)

Пример 2 . Гидролиз ортофосфата рубидия.

1. Определяем тип гидролиза:

Рубидий – щелочной металл, его гидроксид — сильное основание, фосфорная кислота, особенно по своей третьей стадии диссоциации, отвечающей образованию фосфатов, — слабая кислота.

2. Пишем ионное уравнение гидролиза, определяем среду:

Продукты — гидрофосфат- и гидроксид-ионы, среда – щелочная.

3. Составляем молекулярное уравнение:

Получили кислую соль – гидрофосфат рубидия.

Алгоритм написания уравнений реакций гидролиза соли сильной кислоты и слабого основания

2. Гидролиз соли сильной кислоты и слабого основания:

Пример 1. Гидролиз нитрата аммония.

В случае многозарядного катиона гидролиз протекает ступенчато, например:

I ступень : Cu 2+ + HOH ↔ CuOH + + H +

II ступень : CuOH + + HOH ↔ Cu(OH)2 + H +

При этом концентрация ионов водорода и pH среды в растворе также определяются главным образом первой ступенью гидролиза.

Пример 2. Гидролиз сульфата меди(II)

1. Определяем тип гидролиза.

На этом этапе необходимо написать уравнение диссоциации соли:

Соль образована катионом слабого основания (подчеркиваем) и анионом сильной кислоты.

2. Пишем ионное уравнение гидролиза, определяем среду:

Образуется катион гидроксомеди(II) и ион водорода,

3. Составляем молекулярное уравнение.

Надо учитывать, что составление такого уравнения есть некоторая формальная задача. Из положительных и отрицательных частиц, находящихся в растворе, мы составляем нейтральные частицы, существующие только на бумаге. В данном случае мы можем составить формулу (CuOH)2SO4, но для этого наше ионное уравнение мы должны мысленно умножить на два.

Обращаем внимание, что продукт реакции относится к группе основных солей. Названия основных солей, как и названия средних, следует составлять из названий аниона и катиона, в данном случае соль назовем «сульфат гидроксомеди(II)».

Алгоритм написания уравнений реакций гидролиза соли слабой кислоты и слабого основания

3. Гидролиз соли слабой кислоты и слабого основания:

Пример 1. Гидролиз ацетата аммония.

В этом случае образуются два малодиссоциированных соединения, и pH раствора зависит от относительной силы кислоты и основания.

Если продукты гидролиза могут удаляться из раствора, например, в виде осадка или газообразного вещества, то гидролиз протекает до конца.

Пример 2. Гидролиз сульфида алюминия.

2А l 3+ + 3 S 2- + 6Н2О = 2Аl(OН)3(осадок) + ЗН2S (газ)

Пример 3. Гидролиз ацетата алюминия

1. Определяем тип гидролиза:

Соль образована катионом слабого основания и анионами слабой кислоты.

2. Пишем ионные уравнения гидролиза, определяем среду:

Учитывая, что гидроксид алюминия очень слабое основание, предположим, что гидролиз по катиону будет протекать в большей степени, чем по аниону.

Следовательно, в растворе будет избыток ионов водорода, и среда будет кислая.

Не стоит пытаться составлять здесь суммарное уравнение реакции. Обе реакции обратимы, никак друг с другом не связаны, и такое суммирование бессмысленно.

3 . Составляем молекулярное уравнение:

Это тоже формальное упражнение, для тренировки в составлении формул солей и их номенклатуре. Полученную соль назовем ацетат гидроксоалюминия.

Алгоритм написания уравнений реакций гидролиза соли сильной кислоты и сильного основания

4. Соли, образованные сильной кислотой и сильным основанием

, гидролизу не подвергаются, т.к. единственным малодиссоциирующим соединением является H2O.

Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален.

Источник

Adblock
detector