Меню

Электролитическое получение меди реферат

Электролиз меди

Автор работы: Пользователь скрыл имя, 19 Ноября 2013 в 09:43, курсовая работа

Краткое описание

Медь стали применять еще до нашей эры; производили тогда ее кустарным способом. С развитием техники развивалось и производство меди.
Во второй половине XIX столетия с развитием электротехники и повышением требованием требований к чистоте меди возник новый процесс в металлургии меди – электролитическое рафинирование, научной основой которого служит физическая химия

Прикрепленные файлы: 1 файл

РАФИНИРОВАНИЕ МЕДИ tekct.doc

Медь стали применять еще до нашей эры; производили тогда ее кустарным способом. С развитием техники развивалось и производство меди.

Во второй половине XIX столетия с развитием электротехники и повышением требованием требований к чистоте меди возник новый процесс в металлургии меди – электролитическое рафинирование, научной основой которого служит физическая химия.

С возникновением электроники и ряда других новых видов производств требования к чистоте меди сильно возросли. Появилась необходимость производить медь особо высокой чистоты, содержание основного металла в которой 99,99% и выше.

Электролитическим рафинированием получают медь достаточной чистоты и наиболее полно извлекают содержащиеся в выплавляемой меди драгоценные металлы и редкие элементы (селен и теллур).

Электролитическое рафинирование меди – процесс сложный, требующий больших материальных и энергетических затрат. Поэтому для данного производства необходимо тщательное соблюдение технологического режима и точный контроль.

Так как производство электролитической рафинированной меди возрастает, то требуется постоянное совершенствование технологии рафинирования, механизация и автоматизация производственных процессов.

1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОЦЕССА ЭЛЕКТРОЛИТИЧЕС КОГО РАФИНИРОВАНИЯ

Анодная медь содержит 99,4-99,6% Cu; остальное приходится на долю оставшихся после огневого рафинирования примесей, включая золото, серебро, селен и теллур. В среднем в 1 т анодной меди содержится 30-100 г золота и до 1000 г серебра. Такую медь обязательно подвергают рафинированию методом электролиза.

В процессе электролитического рафинирования решаются две основные задачи: глубокая очистка меди от примесей и попутное извлечение сопутствующих меди ценных компонентов. Согласно ГОСТ 859-66 высшая марка электролитной меди М0 должна содержать не более 0,04% примесей, в том числе не более 0,02% кислорода, а остальные 0,02% приходятся на долю девяти регламентируемых примесей.

Сущность электролитического рафинирования меди заключается в том, что литые аноды и тонкие матрицы из электролитной меди – катоды попеременно завешивают в электролитную ванну, заполненную электролитом, и через эту систему пропускают постоянный ток (рис.1)

Электролит – водный раствор сульфата меди (160-200 г/л) и серной кислоты (135-200 г/л) с примесями и коллоидными добавками, расход которых составляет 50-60 г/т Cu. Чаще всего в качестве коллоидных добавок используют столярный клей и тиомочевину. Они вводятся для улучшения качества (структуры) катодных осадков.

Механизм электролитического рафинирования меди включает следующие элементарные стадии:

1) электрохимическое растворение меди на

аноде с отрывом электронов и

образованием катиона: Cu-2е→Cu 2+ ;

2) перенос катиона через слой электроли-

3) электрохимическое восстановление ка-

тиона меди на катоде: Cu 2+ + 2е→ Cu;

4) внедрение образовавшегося атома меди

в кристаллическую решетку катода (рост катодного

Для осаждения одного граммэквивалента

металла (для меди 63,56:2=31,78 г) расходуется

96500 Кл электричества или 96500:9600=26,8 А∙ ч.

При пропускании через раствор тока силой

1 А в течение 1 ч выделится 31,78:26,8=1,186 г меди.

Эта величина называется электрохимическим экви-

валентом меди, следовательно, для того чтобы оса-

дить на катоде больше меди, нужно пропустить

через электролитную ванну больше электричества.

Для количественной оценки интенсивности процес-

са электролиза на практике пользуются величиной

плотности тока (D), которая выражается отношением

силы тока (I) к единице поверхности (F):D=I/F А/м 2 .

При электролитическом рафинировании

меди чаще всего работают при плотности тока 240-

300 А/м 2 . Следует отметить, что использование

особых режимов электролиза (реверсивный ток,

системы циркуляции электролита и др.) уже сейчас

позволяет довести плотность тока до 400-500 А/м 2 и

На практике выход основного металла на катоде всегда ниже теоретического. Отношение массы фактически выделившегося металла к его теоретическому количеству, которое должно было бы выделиться по закону Фарадея, называют выходом по току. Этот показатель выражают обычно в процентах 1 . Физический смысл этого показателя можно определить как степень использования протекающего через электролизер тока на совершение основной электрохимической реакции. Так, при выходе по току, равном 95%, 5% затраченной электроэнергии расходуется на побочные электрохимические процессы. С повышением выхода по току увеличивается производительность процесса электролиза и снижается удельный расход электроэнергии.

Расход электроэнергии при электролизе зависит также от падения напряжения на ванне, которое при электролитическом рафинировании меди возникает главным образом в

результате преодоления сопротивления электролита (60-65% от общего) и токоподводящих шин, контактов (

20%). Напряжение на ванне можно рассчитать по формуле: U=IR1 + IR2 + IR3, где I – сила тока, подводимого к ванне, А; R1, R2, R3 – электрическое сопротивление соответственно электролита, шин, контактов.

Из формулы видно, что напряжение на ванне будет возрастать с увеличением силы тока, то есть плотности тока. При плотностях тока 250-300 А/м 2 , выходе по току около 95% и напряжении на ваннах 0,25-0,3 В практический удельный расход электроэнергии на современных медеэлектролитных заводах составляет 230-350 кВт∙ч на 1 т меди.

Как уже отмечалось выше, электролитическое рафинирование меди направлено на глубокую очистку ее от примесей. Имеющиеся в анодной меди примеси в процессе электролиза ведут себя по-разному. Их поведение определяется положением в ряду напряжений.

Медь, имеющая нормальный потенциал, равный +0,34 В, по отношению к водороду электроположительна. Правее ее в ряду напряжений находятся лишь благородные металлы. Разряд ионов водорода на катоде, приводящий к снижению выхода по току при электролизе меди, возможен при недостаточной концентрации ионов меди.

Все присутствующие в анодной меди примеси по их электрохимическому поведению можно разбить на четыре группы.

К первой группе относятся наиболее электроотрицательные по сравнению с медью примеси, которые практически полностью растворяются на аноде и могут попасть в катодную медь в виде межкристаллических включений (захватов) раствора особенно при чрезмерном повышении их концентрации в электролите (вблизи катода). К ним относятся железо, никель, кобальт, цинк, олово, свинец. Для предотвращения загрязнения катодов этими примесями часть электролита нужно выводить на очистку (регенерацию). Исключение из числа примесей этой группы составляют олово и свинец, которые выпадают в шлам вследствие образования нерастворимых в сернокислом электролите соединений.

Вторую группу примесей образуют мышьяк, сурьма и висмут. Их электродные потенциалы близки к потенциалу выделения меди, и поэтому их переход в катодные осадки наиболее вероятен. Для предотвращения попадания этих наиболее опасных примесей в катодные осадки необходимо не допускать повышения их концентрации выше предельно допустимых. На практике этого достигают выводом мышьяка, сурьмы и висмута из раствора при регенерации электролита.

1 На практике в выход по току включают также потери тока, затрачиваемого на преодоление различных сопротивлений в электрической цепи.

Читайте также:  Удельная электрическая проводимость для меди

К третьей группе относятся благородные металлы, которые в условиях электролиза меди как более электроположительные анодно не растворяются. По мере растворения анода они теряют с ним механическую связь и на 98-99% осыпаются в шлам.

Примеси четвертой группы, представленные растворенными в анодной меди химическими соединениями типа Cu2S, Cu2Se, CuTe, вследствие электрохимической нейтральности и малой растворимости в электролите также практически полностью переходят в шлам подобно благородным металлам.

Для электролитического рафинирования применяют железобетонные ванны ящичного типа, имеющие в плане удлиненное прямоугольное сечение. Для повышения коррозионной стойкости ванн против воздействия сернокислого электролита внутреннюю часть ванн облицовывают винипластом, стеклопластиком, полипропиленом, кислотоупорным бетоном и другими кислотостойкими материалами.

В настоящее время чаще всего электролитные ванны группируют в блоки по 10-20 ванн, а затем – в серии, состоящие, как правило, из двух блоков (рис 2. ). Все электроды в отдельных ваннах – катоды и аноды – включены параллельно, а ток через блоки и серии проходит последовательно. Поперечный разрез блока ванн для электролитического рафинирования приведен на рис3.

Геометрические размеры ванн зависят от размеров и числа электродов. Современные ванны имеют длину 3,5-5,5 м, ширину 1-1,1 м и глубину 1,2-1,3 м.

Аноды и катоды подвешивают поочередно. При этом число катодов в ванне всегда на один больше, чем анодов, и они имеют увеличенные на 20-30 мм ширину и высоту по сравнению с анодными пластинами.

При установке в ванну анодов их укладывают одним из ушек на токоподводящую шину или же соединяют с катодной штангой катодов соседней ванны (иногда через промежуточную шинку). Подвод тока от источника питания осуществляют только к крайним шинам блока или к серии ванн (рис.2). преобразователями переменного тока в постоянный в последние годы почти повсеместно служат малогабаритные, наиболее экономичные кремниевые выпрямители.

Первичными катодами служат тонкие (0,4-0,6 мм) листы из электролитной меди – катодные основы. Их заготавливают электролитическим путем на матрицах из холоднокатаных меди или титана. К содранным с матрицы листам после обрезки кромок приклепывают ушки, обеспечивающие в дальнейшем контакт катода с токоподводящей штангой.

Время наращивания полновесного катода в товарным ваннах на различных заводах колеблется от 6 до 15 суток. Ко времени выгрузки масса катода достигает 60-140 кг. После тщательной промывки готовые катоды направляют потребителю или переплавляют в слитки.

Растворение анода обычно длится 20-30 суток и зависит от его толщины и режима электролиза. Анодные остатки, составляющие 12-18% первоначальной массы, переплавляют в анодных печах в новые аноды. За время работы анодов производят 2-3 съема катодов.

В процессе электролиза электролит загрязняется примесями и обогащается медью. Накопление меди происходит главным образом за счет того, что анодный выход по току меди больше катодного выхода вследствие образования на аноде некоторого незначительного количества ионов Cu + . Обогащению электролита медью способствует также химическое растворение катодной и анодной меди и содержащейся в анодах закиси.

Для предупреждения накопления примесей и удаления избытка меди электролит подв6ергают обновлению (регенерация). Для регенерации часть электролита выводят из ванн. Количество выводимого электролита рассчитывают по предельно допустимой концентрации ведущей примеси, накопление которой идет наиболее быстро. Обычно такой примесью является никель, реже мышьяк.

Вывод электролита на регенерацию практически осуществляется во время организации его обязательной непрерывной циркуляции в электролитных ваннах. Помимо частичного обновления электролита, циркуляция должна обеспечивать выравнивание его состава в межэлектродном пространстве. Это обеспечивает получение качественных катодных осадков и снижение расхода электроэнергии. Циркуляция должна обеспечивать смену всего электролита за 3-4 ч.

Циркуляцию электролита можно проводить путем подачи электролита с одного торца ванны и вывода с противоположного торца (перпендикулярно электродам) или прямоточно через все ванны блока параллельно электродам. В последнем случае становится возможным значительно повысить плотность тока без нарушения качества катодной меди.

Во время циркуляции электролит по пути из напорного бака к ваннам подогревают паром до 50-55 о С, что способствует снижению его электрического сопротивления.

Регенерацию электролита с целью его обезмеживания можно проводить несколькими способами. В настоящее время распространено выделение меди электролизом с нерастворимыми (свинцовыми) анодами.

При электролитическом способе медь осаждается из раствора на катоде, а на свинцовых анодах выделяется кислород: Cu 2+ + 2e = Cu; 2OH — — 2e = H2O + 1 /2 O2.

Источник

Электролитическое рафинирование меди

Описание и анализ технологии получения катодной меди, ее особенности. Выбор технологии плавки на штейне, его критерии. Теоретические основы процесса Ванюкова. Расчет материального и теплового баланса, его основные этапы и оценка полученных результатов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Металлургия меди, а также других тяжелых цветных металлов является ведущим звеном отечественной цветной металлургии. На долю тяжелых цветных металлов в РФ приходится значительная часть валовой продукции отрасли.

Значение меди из года в год возрастает, особенно в связи с бурным развитием энергетики, электроники, машиностроения, авиационной, космической и атомной техники. Дальнейшее развитие и технический уровень медного и никелевого производств во многом определяют технический прогресс многих отраслей народного хозяйства нашей страны, в том числе микропроцессорной техники. Для получения меди используются всевозможные способы плавок, например, плавка медных концентратов в электрических, отражательных, шахтных печах, при использовании процесса конвертирования медных штейнов, благодаря автогенным плавкам во взвешенном состоянии, на штейне и др. На сегодняшний день существует несколько основных процессов автогенных плавок: процесс «Норанда», «Уоркра», «Мицубиси» и Ванюкова. К сожалению, разработка новый конструкций печей и различных процессов требует значительных капиталовложений, а свободный средств у Российских предприятий недостаточно. В данной курсовой работе будет рассмотрена технология А.В. Ванюкова или ПЖВ.

Технология получения катодной меди

катодный медь плавка штейн

Электролитическое рафинирование меди преследует две цели:

1) получение меди высокой чистоты (99,90-99,99% Си), удовлетворяющей требованиям большинства потребителей;

2) извлечение попутно с рафинированием благородных и других ценных компонентов (Se, Те, Ni, Bi и др.).

Следует отметить, что чем выше в исходной меди содержание благородных металлов, тем ниже будет себестоимость электролитной меди. Именно поэтому при конвертировании медных штейнов стремятся использовать в качестве флюса золотосодержащие кварциты.

Для осуществления электролитического рафинирования меди аноды, отлитые после огневого рафинирования, помещают в электролизные ванны, заполненные сернокислым электролитом. Между анодами в ваннах располагаются тонкие медные листы — катодные основы.

При включении ванн в сеть постоянного тока происходит электрохимическое растворение меди на аноде, перенос катионов через электролит и осаждение ее на катоде. Примеси меди при этом в основном распределяются между шламом (твердым осадком на дне ванн) и электролитом.

Читайте также:  Французская посуда из меди

В результате электролитического рафинирования получают катодную медь; шлам, содержащий благородные металлы; селен;

теллур и загрязненный электролит, часть которого иногда используют для получения медного и никелевого купоросов. Кроме того, вследствие неполного электрохимического растворения анодов получают анодные остатки (анодный скрап).

Электролитическое рафинирование меди основано на различии ее электрохимических свойств и содержащихся в ней примесей. В таблице приведены нормальные электродные потенциалы меди и наиболее часто встречающихся в ней примесей.

Медь относится к группе электроположительных металлов, ее нормальный потенциал +0,34 В, что позволяет осуществлять процесс электролиза в водных растворах (обычно в сернокислых).

На катоде протекают те же электрохимические реакции, но в обратном направлении. Соотношение между одновалентной и двухвалентной медью в растворе определяется равновесием реакции диспропорционирования.

Следовательно, в состоянии равновесия концентрация в растворе ионов Сu+ примерно в тысячу раз меньше, чем концентрация ионов Си 2+ . Тем не менее реакция имеет существенное значение для электролиза. Она в частности определяет переход меди в шлам. В начальный момент вблизи анода в растворе соотношение двух- и одновалентной меди соответствует константе равновесия. Однако вследствие большего заряда и меньшего ионного радиуса скорость перемещения двухвалентных ионов к катоду превышает скорость переноса ионов одновалентных. В результате этого в прианодном слое концентрация ионов Си 2+ становится выше равновесной и реакция начинает идти в сторону образования тонкого порошка меди, выпадающего в шлам.

Как указывалось выше, электролитическое рафинирование осуществляют в сернокислых растворах. Электроположительный потенциал меди позволяет выделить медь на катоде из кислых растворов без опасения выделения водорода. Введение в электролит наряду с медным купоросом свободной серной кислоты существенно повышает электропроводность раствора. Объясняется это большей подвижностью ионов водорода по сравнению с подвижностью крупных катионов и сложных анионных комплексов.

Для улучшения качества катодной поверхности в электролиты для рафинирования меди на всех заводах обязательно вводят разнообразные поверхностно-активные (коллоидные) добавки: клей (чаще столярный), желатин, сульфитный щелок. В процессе электролиза на поверхности катода могут образовываться дендриты, что уменьшает в данном месте расстояние между катодом и анодом. Уменьшение межэлектродного расстояния ведет к уменьшению электрического сопротивления, а следовательно, к местному увеличению плотности тока. Последнее в свою очередь обусловливает ускоренное осаждение меди на дендрите и ускоренный его рост. Начавшийся рост дендрита в конечном итоге может привести к короткому замыканию между катодом и анодом. При наличии дендритов сильно развитая поверхность катода удерживает большое количество электролита и плохо промывается, что не только ухудшает качество товарных катодов, но и может вызвать брак катодной меди по составу. Одно из объяснений механизма действия поверхностно-активных веществ заключается в том, что они адсорбируются на наиболее активных частях поверхности и при этом вызывают местное повышение электрического сопротивления, что и препятствует росту дендрита. В результате поверхность катодов получается более ровной, а катодный осадок более плотным. После выравнивания катодной поверхности коллоидная добавка десорбирует в электролит.

Растворы коллоидных добавок непрерывно вводят в циркулирующий электролит. Вид и расход поверхностно-активных веществ различны для каждого предприятия. Обычно применяют одновременно две добавки. На 1 т получаемой катодной меди расходуют 15-40 г. клея, 15-20 г. желатина, 20-60 г. сульфитных щелоков или 60-100 г. тиомочевины.

Основными требованиями, предъявляемыми к электролиту, являются его высокая электропроводность (низкое электрическое сопротивление) и чистота. Однако реальные электролиты, помимо сульфата меди, серной кислоты, воды и необходимых добавок, обязательно содержат растворенные примеси, содержащиеся до этого в анодной — меди. Поведение примесей анодной меди при электролитическом рафинировании определяется их положением в ряду напряжений. По электрохимическим свойствам примеси можно разделить на четыре группы:

I группа — металлы более электроотрицательные, чем медь (Ni, Fe, Zn и др.);

II группа — металлы, близко стоящие в ряду напряжений к-меди (As, Sb, Bi);

III группа — металлы более электроположительные, чем медь (Au, Ag и платиноиды);

IV группа — электрохимически нейтральные в условиях рафинирования меди химические соединения (Cu2S, Cu2Se, Cu2Te, AuTe2, Ag2Te).

Примеси первой группы, обладающие наиболее электроотрицательным потенциалом, практически полностью переходят в электролит. Исключение составляет лишь никель, около 5% которого из анода осаждается в шлам в виде твердого раствора никеля в меди. Твердые растворы по закону Нернста становятся даже более электроположительными, чем медь, что и является причиной их перехода в шлам.

Особо по сравнению с перечисленными группами примесей-ведут себя свинец и олово, которые по электрохимическим свойствам относятся к примесям I группы, но по своему поведению в процессе электролиза могут быть отнесены к примесям III и IV групп. Свинец и олово образуют нерастворимые в сернокислом растворе сульфат свинца PbS04 и метаоловянную кислоту H2SnO3. Электроотрицательные примеси на катоде в условиях электролиза меди практически не осаждаются и постепенно накапливаются в электролите. При большой концентрации в электролите металлов первой группы электролиз может существенно расстроиться.

Накопление в электролите сульфатов железа, никеля и цинка снижает концентрацию в электролите сульфата меди. Кроме того, участие электроотрицательных металлов в переносе тока через электролит усиливает концентрационную поляризацию у катода.

Электроотрицательные металлы могут попадать в катодную медь в основном в виде межкристаллических включений. раствора или основных солей, особенно при их значительной концентрации в электролите. В практике электролитического рафинирования меди не рекомендуется допускать их концентрацию в растворе свыше следующих значений, г/л: 20 Ni; 25 Zn; 5 Fe.

Примеси II группы (As, Sb, Bi), имеющие близкие к меди электродные потенциалы, являются наиболее вредными с точки зрения возможности загрязнения катода. Будучи несколько более электроотрицательными по сравнению с медью, они полностью растворяются на аноде с образованием соответствующих сульфатов, которые накапливаются в электролите. Однако сульфаты этих примесей неустойчивы и в значительной степени подвергаются гидролизу, образуя основные соли (Sb и Bi) или мышьяковистую кислоту (As). Основные соли сурьмы образуют плавающие в электролите хлопья студенистых осадков («плавучий» шлам), которые захватывают частично и мышьяк.

В катодные осадки примеси мышьяка, сурьмы и висмута могут попадать как электрохимическим, так и механическим путем в результате адсорбции тонкодисперсных частичек «плавучего» шлама. Таким образом, примеси II группы распределяются между электролитом, катодной медью и шламом. Предельно допустимые концентрации примесей II группы в электролите составляют, г/л: 9 As; 5 Sb и 1,5 Bi.

Более электроположительные по сравнению с медью примеси (III группа), к которым относятся благородные металлы (главным образом, Au и Ag), в соответствии с положением в ряду напряжений должны переходить в шлам в виде тонкодисперсного остатка. Это подтверждается практикой электролитического рафинирования меди.

Переход золота в шлам составляет более 99,5% от его содержания в анодах, а серебра — более 98%. Несколько меньший переход серебра в шлам по сравнению с золотом связан с тем, что серебро способно в небольшом количестве растворяться в электролите и затем из раствора выделяться на катоде. Для уменьшения растворимости серебра и перевода его в шлам в состав электролита вводят небольшое количество иона хлора.

Читайте также:  Монтаж кровли из меди индруф

Несмотря на практически полный переход золота и серебра в шлам, они все же в небольшом количестве попадают в катодные осадки. Объясняется это механическим захватом взмученного шлама и отчасти явлением катофореза. На механический перенос шлама на катод влияют применяемая плотность тока и взаимосвязанная с ней скорость циркуляции электролита. С увеличением скорости циркуляции вследствие взмучивания шлама переход золота и серебра на катод возрастает. При выборе плотности тока и способа циркуляции электролита необходимо учитывать содержание благородных металлов в анодах. В случае их повышенного содержания плотность тока должна быть меньше. Снижению переноса шлама на катод способствует также наличие в ванне зоны отстаивания (область от нижнего конца катода до дна ванны). На многих заводах электролит перед его возвращением в ванну в цикле циркуляции подвергают фильтрованию, что уменьшает потери шлама и обеспечивает получение более чистой меди.

Аналогично электроположительным примесям ведут себя при электролизе меди химические соединения (примеси IV группы). Хотя в принципе химические соединения и могут окисляться на аноде и восстанавливаться на катоде, что используют в специальных процессах, в условиях электролитического рафинирования меди анодного потенциала недостаточно для их окисления. Поэтому при электролизе меди в электродных процессах они не участвуют и по мере растворения анода осыпаются на дно ванны. В виде селенидов и теллуридов переходят в шлам более чем 99% селена и теллура.

Таким образом, в результате электролитического рафинирования анодной меди все содержащиеся в ней примеси распределяются между катодной медью, электролитом и шламом’.

Основными характеристиками, определяющими параметры и показатели электролитического рафинирования меди, являются плотность тока, выход металла по току, напряжение на ванне, удельный расход электроэнергии.

Плотность тока является важнейшим параметром процесса электролиза. Она выражается в амперах на единицу поверхности электрода (D=I/S). В металлургии меди ее принято выражать в амперах на квадратный метр площади катодов. По закону Фарадея на каждый 1 А * ч электричества осаждается 1 электрохимический эквивалент металла. Для меди он равен 1,1857 г./А * ч. Следовательно, с увеличением плотности тока интенсивность (производительность) процесса электролиза возрастает. Величина плотности тока, при которой проводят процесс электролитического рафинирования, определяет все его основные технико-экономические показатели: напряжение на ванне, выход по току, расход электроэнергии, а также капитальные и эксплуатационные затраты. С увеличением плотности тока при прочих равных условиях увеличивается производительность цеха, уменьшаются число потребных ванн, затраты на капитальное строительство и рабочую силу, но возрастают затраты на электроэнергию. Следует отметить, однако, что с увеличением плотности тока увеличиваются потери благородных металлов за счет большего взмучивания шлама и захвата его растущим катодным осадком. В настоящее время применение особых режимов электролиза (реверсивного тока, измененной системы циркуляции электролита и др.) позволяет довести плотность тока до 500 А/м 2 и более.

Электрохимический эквивалент меди составляет 1,1857 г./А * ч. Однако практически при электролизе для выделения 1 г-экв металла расходуется электричества больше. Это кажущееся противоречие объясняется тем, что часть электрического тока расходуется на побочные электрохимические процессы и утечку тока. Степень использования тока на основной электрохимический процесс называется выходом металла по току.

В практике электрометаллургии цветных металлов в большинстве случаев приходится иметь дело с катодным выходом по току, так как масса катодного осадка определяет конечный выход товарной продукции. Преднамеренный повышенный перевод меди в электролит за счет химического растворения часто обусловливают конъюнктурными соображениями. Избыточная медь может быть выделена из электролита в виде медного купороса при его регенерации. В тех случаях, когда потребность в медном купоросе, используемом в основном для борьбы с болезнями и вредителями сельскохозяйственных растений, очень велика (например, в НРБ), допускается работа электролизных цехов с повышенной температурой электролита.

Выбор технологии плавки на штейне

Почти столетие в металлургии меди и около полувека в металлургии никеля (в Канаде) «господствует» отражательная плавка. Свое широкое распространение она получила благодаря освоенности плавки применительно к переработке различных видов мелких рудных материалов, главным образом флотационных концентратов, простоте организации процесса почти в любых условиях металлургического производства. Основными причинами острой необходимости замены отражательной плавки стали высокие требования к предотвращению загрязнения окружающей среды выбросами оксидов серы. В условиях отражательной плавки, характеризующейся образованием огромных количеств очень бедных по SO2 газов, их обезвреживание требует больших капитальных затрат и обходится дорого в эксплуатации. В связи с этим, а также в связи с необходимостью активного использования теплотворной способности сульфидов и ряда других рассмотренных выше факторов были разработаны и освоены новые способы плавки медного сырья. Главным образом это — автогенные процессы, совмещающие в себе обжиг, плавку и конвертирование. В этих процессах большая часть серы переходит в отходящие газы с достаточно высоким и постоянным содержанием SO2.

Ниже приведены сравнительные основные технико-экономические показатели применяемых в настоящее время в медной промышленности пирометаллургических процессов.

Уже в начальной стадии освоения процесса плавки в жидкой ванне достигнута удельная производительность, превышающая более чем в 15 раз производительность отражательной печи при плавке сырой шихты, и в 6-8 раз производительность КВП и финской технологии. Возможно широкое управление составом штейна и получение на богатых штейнах относительно бедных отвальных шлаков.

Процесс характеризуется низким пылеуносом и получением возгонов, богатых по содержанию ценных компонентов. Для осуществления процесса создана надежная и долговечная аппаратура. Процесс не требует сложной подготовки сырья и пригоден для переработки как кусковой руды, так и концентратов различного состава. По своим показателям он превосходит все известные в мировой практике процессы. Процесс следует считать в основном освоенным и заслуживающим широкого и быстрого внедрения в отечественной медной и никелевой промышленности.

Помимо основного использования для плавки сульфидных концентратов на штейн, плавка в жидкой ванне пригодна для более широкого применения. При внедрении процесса в жидкой ванне необходимо учитывать его возможности, пути и направления развития, которые будут осуществляться уже в недалеком будущем.

К перспективным направлениям относятся прежде всего прямое получение черновой меди и глубокое обеднение шлаков, прямое получение медно-никелевого файнштейна, плавка коллективных медно-цинковых концентратов, комплексная переработка отвальных шлаков. Заслуживает внимания также использование принципов плавки в жидкой ванне для переработки окисленных никелевых и железных руд.

Сравнительные технико-экономические показатели некоторых видов плавки сульфидных медных концентратов

Источник

Adblock
detector