Меню

30 хгсл сталь для отливок обыкновенная

Сталь для отливок легированная 30ХГСФЛ

На данной страничке приведены технические, механические и остальные свойства, а также характеристики стали марки 30ХГСФЛ.

Классификация материала и применение марки 30ХГСФЛ

Марка: 30ХГСФЛ
Классификация материала: Сталь для отливок легированная
Применение: шестерни, зубчатые колеса и другие детали машиностроения.

Химический состав материала 30ХГСФЛ в процентном соотношении

Механические свойства 30ХГСФЛ при температуре 20 o С

Сортамент Размер Напр. s в s T d 5 y KCU Термообр.
мм МПа МПа % % кДж / м 2
Отливки, К40, ГОСТ 977-88 до 100 589 392 15 25 343 Нормализация 900 — 930 o C,Отпуск 600 — 650 o C,
Отливки, КТ60, ГОСТ 977-88 785 589 14 25 441 Закалка 900 — 920 ° C, Отпуск 630 — 670 ° C

Расшифровка обозначений, сокращений, параметров

Механические свойства :
s в — Предел кратковременной прочности , [МПа]
s T — Предел пропорциональности (предел текучести для остаточной деформации), [МПа]
d 5 — Относительное удлинение при разрыве , [ % ]
y — Относительное сужение , [ % ]
KCU — Ударная вязкость , [ кДж / м 2 ]
HB — Твердость по Бринеллю , [МПа]

Другие марки из этой категории:

Обращаем ваше внимание на то, что данная информация о марке 30ХГСФЛ, приведена в ознакомительных целях. Параметры, свойства и состав реального материала марки 30ХГСФЛ могут отличаться от значений, приведённых на данной странице. Более подробную информацию о марке 30ХГСФЛ можно уточнить на информационном ресурсе Марочник стали и сплавов. Информацию о наличии, сроках поставки и стоимости материалов Вы можете уточнить у наших менеджеров. При обнаружении неточностей в описании материалов или найденных ошибках просим сообщать администраторам сайта, через форму обратной связи. Заранее спасибо за сотрудничество!

Источник

ГОСТ 977-88

ОТЛИВКИ СТАЛЬНЫЕ
Общие технические условия

Марки сталей по ГОСТ 977-88 для изготовления отливок:

  • Конструкционные нелегированные: 15Л, 20Л, 25Л, 30Л, 35Л, 40Л, 45Л, 50Л
  • Конструкционные легированные: 20ГЛ, 35ГЛ, 20ГСЛ, 30ГСЛ, 20Г1ФЛ, 20ФЛ, 30ХГСФЛ, 45ФЛ, 32Х06Л, 40ХЛ, 20ХМЛ, 20ХМФЛ, 20ГНМФЛ, 35ХМЛ, 30ХНМЛ, 35ХГСЛ, 35НГМЛ, 20ДХЛ, 08ГДНФЛ, 13ХНДФТЛ, 12ДН2ФЛ, 12ДХН1МФЛ, 23ХГС2МФЛ, 12Х7Г3СЛ, 25Х2ГНМФЛ, 27Х5ГСМЛ, 30Х3С3ГМЛ, 03Н12Х5М3ТЛ, 03Н12Х5М3ТЮЛ
  • Конструкционные легированные, применяемые в договорно-правовых отношениях между странами — членами СЭВ: 15ГЛ, 30ГЛ, 45ГЛ, 70ГЛ, 55СЛ, 40Г1, 5ФЛ, 15ФЛ, 30ХЛ, 25ХГЛ, 35ХГЛ, 50ХГЛ, 60ХГЛ, 70Х2ГЛ, 35ХГФЛ, 40ХФЛ, 30ХМЛ, 40ХМЛ, 40ХНЛ, 40ХН2Л, 30ХГ1, 5МФРЛ, 75ХНМФЛ, 40ГТЛ, 20ГНМЮЛ
  • Легированные со специальными свойствами:
    • мартенситного класса
      • 20Х13Л, 08Х14НДЛ, 09Х16Н4БЛ, 09Х17Н3СЛ, 10Х12НДЛ — коррозионно-стойкие;
      • 20Х5МЛ, 20Х8ВЛ, 40Х9С2Л — жаростойкие;
      • 20Х12ВНМФЛ — жаропрочная;
      • 85Х4М5Ф2В6Л (Р6М5Л), 90Х4М4Ф2В6Л (Р6М4Ф2Л) — быстрорежущие;
    • мартенситно-ферритного класса
      • 15Х13Л — коррозионностойкая;
    • ферритного класса
      • 15Х25ТЛ — коррозионностойкая;
    • аустенитно-мартенситного класса
      • 08Х15Н4ДМЛ, 08Х14Н7МЛ, 14Х18Н4Г4Л — коррозионностойкие;
    • аустенитно-ферритного класса
      • 12Х25Н5ТМФЛ, 16Х18Н12С4ТЮЛ, 10Х18Н3Г3Д2Л — коррозионностойкие;
      • 35Х23Н7СЛ, 40Х24Н12СЛ, 20Х20Н14С2Л — жаростойкие;
    • аустенитного класса
      • 10Х18Н9Л, 12Х18Н9ТЛ, 10Х18Н11БЛ, 07Х17Н16ТЛ, 12Х18Н12М3ТЛ — коррозионностойкие;
      • 55Х18Г14С2ТЛ, 15Х23Н18Л, 20Х25Н19С2Л, 18Х25Н19СЛ, 45Х17Г13Н3ЮЛ — жаростойкие;
      • 35Х18Н24С2Л, 31Х19Н9МВБТЛ, 12Х18Н12БЛ, 08Х17Н34В5Т3Ю2РЛ, 15Х18Н22В6М2РЛ, 20Х21Н46В8РЛ — жаропрочные;
      • 110Г13Л, 110Г13Х2БРЛ, 110Г13ФТЛ, 130Г14ХМФАЛ, 120Г10ФЛ — износостойкие
  • Легированные со специальными свойствами, применяемые в договорно-правовых отношениях между странами — членами СЭВ:
    • мартенситно-ферритного класса
      • 15Х14НЛ, 08Х12Н4ГСМЛ — коррозионностойкие;
    • аустенитно-ферритного класса
      • 12Х21Н5Г2СЛ, 12Х21Н5Г2СТЛ, 12Х21Н5Г2СМ2Л, 12Х19Н7Г2САЛ, 12Х21Н5Г2САЛ, 07Х18Н10Г2С2М2Л, 15Х18Н10Г2С2М2Л, 15Х18Н10Г2С2М2ТЛ — коррозионностойкие.
Читайте также:  Технология выплавки легированной стали

Содержание ГОСТ 977-88:

  • Область применения ГОСТ 977-88 . стр. 1
  • Марки стали . стр. 1
    • Химический состав конструкционной нелегированной и легированной стали . стр. 2
    • Химический состав легированной стали со специальными свойствами . стр. 6
  • Основные параметры и размеры отливок . стр. 12
  • Технические требования . стр. 13
  • Приемка . стр. 18
  • Методы испытаний . стр. 19
  • Упаковка, транспортирование и хранение . стр. 22
  • Приложение 1. Область применения конструкционной легированной стали . стр. 23
  • Приложение 2. Область применения стали со специальными свойствами . стр. 24
  • Приложение 3. Режимы термической обработки конструкционной нелегированной и легированной стали . стр. 29
  • Приложение 4. Режимы термической обработки легированной стали со специальными свойствами . стр. 31
  • Информационные данные о ГОСТ 977-88 . стр. 33

Источник

Сталь для отливок (литейная сталь)

Сталь для отливок обыкновенная
03Н12Х5М3ТЛ 03Н12Х5М3ТЮЛ 08ГДНФЛ 08Х17Н34В5Т3Ю2Л 110Г13Л
120Г13Х2БЛ 12ДН2ФЛ 12ДХН1МФЛ 12Х7Г3СЛ 13НДФТЛ
13ХНДФТЛ 14Х2ГМРЛ 15ГЛ 15ГНЛ 15Л
20Г1ФЛ 20ГЛ 20ГНМФЛ 20ГСЛ 20ДХЛ
20Л 20ФЛ 20ХГСНДМЛ 20ХГСФЛ 20ХМЛ
20ХМФЛ 23ХГС2МФЛ 25ГСЛ 25Л 25Х2Г2ФЛ
25Х2ГНМФЛ 25Х2НМЛ 27Х5ГСМЛ 30ГЛ 30ГСЛ
30Л 30Х3С3ГМЛ 30ХГСФЛ 30ХГФРЛ 30ХНМЛ
32Х06Л 35ГЛ 35Л 35НГМЛ 35ХГСЛ
35ХМЛ 35ХМФЛ 35ХН2МЛ 35ХНЛ 40Л
40ХЛ 45ГЛ 45Л 45ФЛ 50Л
55Л 80ГСЛ
Сталь для отливок с особыми свойствами
07Х17Н16ТЛ 07Х18Н9Л 08Х14Н7МЛ 08Х14НДЛ 08Х15Н4ДМЛ
08Х17Н34В5Т3Ю2РЛ 09Х16Н4БЛ 09Х17Н3СЛ 10Х12НДЛ 10Х14НДЛ
10Х17Н10Г4МБЛ 10Х18Н11БЛ 10Х18Н3Г3Д2Л 10Х18Н9Л 110Г13ФТЛ
110Г13Х2БРЛ 120Г10ФЛ 12Х18Н12БЛ 12Х18Н12М3ТЛ 12Х18Н9ТЛ
12Х25Н5ТМФЛ 130Г14ХМФАЛ 14Х18Н4Г4Л 15Х13Л 15Х18Н22В6М2Л
15Х18Н22В6М2РЛ 15Х23Н18Л 15Х25ТЛ 16Х18Н12С4ТЮЛ 18Х25Н19СЛ
20Х12ВНМФЛ 20Х13Л 20Х20Н14С2Л 20Х21Н46В8Л 20Х21Н46В8РЛ
20Х25Н19С2Л 20Х5МЛ 20Х5ТЛ 20Х8ВЛ 31Х19Н9МВБТЛ
35Х18Н24С2Л 35Х23Н7СЛ 40Х24Н12СЛ 40Х9С2Л 45Х17Г13Н3ЮЛ
55Х18Г14С2ТЛ 85Х4М5Ф2В6Л 90Х4М4Ф2В6Л

Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
Сталь для отливок труба, лента, проволока, лист, круг Сталь для отливок

Особенности структуры литейной стали: отличительной особенностью литой стали является грубозернистость ее строения, которая обусловливает низкий механические свойства, особенно характеристики пластичности и вязкости металла. Крупнозернистая структура также весьма неблагоприятно влияет на показатели сопротивления микропластическим деформациям металла. Поэтому решение теоретических и практических вопросов измельчения структуры литой стали имеет весьма актуальное значение.

Читайте также:  Характеристики стали для брони

Проблема улучшения структуры литой стали явилась предметом многочисленных исследований различных авторов. Предложены различные способы воздействия на металл в жидком и твердом состоянии, обеспечивающие значительное улучшение ее свойств.

В ряде работ рассмотрены вопросы измельчения структуры посредством рациональной термической обработки. Показано, что однократный отжиг (или нормализация) литой стали с нагревом немного выше критической точки Ас3 обычно не обеспечивает получения мелкозернистой структуры в стальных отливках.

Посредством сложной термообработки можно измельчить структуру, значительно повысить однородность и механические свойства литой среднеуглеродистой стали. К примеру, для стали с 0,4% С рекомендуется термообработка, состоящая из трехкратного отжига последовательно при температурах 1100-1300, 900-1100 и 850-870° С с медленным охлаждением после 1 и 2-го отжигов ниже критических точек и закалки с температуры последнего отжига. Такой термообработкой можно улучшить структуру литой стали (ликвидация ферритной макросетки, благоприятное изменение характера неметаллических включений) и значительно повысить ее пластичность и ударную вязкость. После двойной нормализации (с 930 и 830° С) по сравнению с однократной (при 860° С) предел текучести стали 35Л повышается с 33,5 до 40,5 кгс/мм 2 , относительное удлинение с 17,5 до 25,3%.

Исследования структурного механизма образования аустенита при нагреве стали, в значительной степени облегчили решение практических задач улучшения структуры и свойств металла с исходной грубозернистой структурой.

При образовании аустенита в процессе нагрева так же, как при его распаде в процессе охлаждения, соблюдается ориентационное соответствие превращающихся фаз а-у. В начальный период а-у превращения независимо от условий нагрева и исходной структуры образование аустанита происходит при сохранении ориентационного соответствия с исходными кристаллами ос-фазы. Зарождение аустенита при нагреве может происходить на субграницах феррита, на высокоугловых границах феррита и карбида в перлитных колониях и границах исходных зерен. При медленном нагреве стали с исходной кристаллографически упорядоченной структурой зарождение аустенита происходит преимущественно на субграницах феррита с восстановлением форм и размеров бывшего аустенитного зерна и внутризеренной текстуры. Разрушение внутризеренной текстуры и измельчение зерна в стали становится возможным при повышении температуры обычно значительно выше Ас3 в результате рекристаллизации аустенита с повышенной от превращения плотностью дефектов вследствие фазового наклепа. При этом рекристаллизация аустенита проходит после растворения карбидных частиц и примесных фаз, находившихся на субграницах.

Ускорение нагрева, особенно в межкритическом интервале температур, способствует образованию участков аустенита на высокоугловых границах феррита и карбида наряду с образованием участков аустенита на субграницах.

Читайте также:  Удовлетворительно свариваемые стали это

Вблизи карбидных частиц при ускоренном нагреве в связи с различием в коэффициентах теплового расширения между матрицей и этими частицами возникают новые источники дефектов. Эти дефекты способствуют возникновению участков аустенита, из которых могут образоваться новые зерна, не связанные с исходной ориентировкой зерна. Это облегчает исправление строения стали с исходной грубозернистой структурой.

В отличие от деформированной доэвтектоидной углеродистой стали, в которой процесс структурной перекристаллизации аустенита обычно заканчивается при переходе через точку Ас3 или лишь немного выше Ас3, в литой стали этот процесс сдвинут к более высоким температурам. Устранение внутризеренной текстуры при рекристаллизации аустенита при температурах значительно выше Ас3 позволяет существенно повысить однородность структуры и характеристики размерной стабильности литой стали.

Краткие обозначения:
σв — временное сопротивление разрыву (предел прочности при растяжении), МПа ε — относительная осадка при появлении первой трещины, %
σ0,05 — предел упругости, МПа Jк — предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 — предел текучести условный, МПа σизг — предел прочности при изгибе, МПа
δ5,δ4,δ10 — относительное удлинение после разрыва, % σ-1 — предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж — предел текучести при сжатии, МПа J-1 — предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν — относительный сдвиг, % n — количество циклов нагружения
s в — предел кратковременной прочности, МПа R и ρ — удельное электросопротивление, Ом·м
ψ — относительное сужение, % E — модуль упругости нормальный, ГПа
KCU и KCV — ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T — температура, при которой получены свойства, Град
s T — предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ — коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB — твердость по Бринеллю C — удельная теплоемкость материала (диапазон 20 o — T ), [Дж/(кг·град)]
HV — твердость по Виккерсу pn и r — плотность кг/м 3
HRCэ — твердость по Роквеллу, шкала С а — коэффициент температурного (линейного) расширения (диапазон 20 o — T ), 1/°С
HRB — твердость по Роквеллу, шкала В σ t Т — предел длительной прочности, МПа
HSD — твердость по Шору G — модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Источник

Adblock
detector