Меню

14 какие фазовые превращения при охлаждении происходят в сталях

Превращения в стали при охлаждении.

В основе термических превращений, происходящих при термообработке, лежат изменения структуры аустенита. При распаде аустенита происходит образование перлита, мартенсита, троостита или других структур, которые и предопределяют механические свойства стали. Скорость распада аустенита зависит от температуры переохлаждения.

Аустенит устойчив только при температуре 727°С. При охлаждении стали, предварительно нагретой до аустенитного состояния, аустенит становится неустойчивым – происходит его структурное изменение.

Если сталь охлаждать очень медленно, то в ней образуется равномерная структура, соответствующая диаграмме железо-углерод, – это смесь феррита и цементита, которая называется перлитом. Распад аустенита с образованием перлита является диффузионным процессом. Чем мельче зерна аустенита в стали при превращении, тем меньше размеры образованных из них зерен перлита (рис 3.2). Сталь с такой структурой обладает хорошими механическими свойствами.

Рис. 3.2. Изменение размера зерна перлита в зависимости от

температуры нагревания стали в аустенитной зоне

Если сталь, нагретую до состояния аустенита, охлаждать с большой скоростью, то произойдет переохлаждение аустенита с его распадом и образованием мелкозернистой ферритно-цементитной смеси. С увеличением скорости охлаждения образуются неравномерные (метастабильные) структуры и сталь приобретает другие свойства. При медленном охлаждении аустенит сохраняется в стали до температуры 727°С (точка Аr1). Увеличение скорости охлаждения снижает критическую точку Аr1 (рис. 3.3). Чем больше скорость охлаждения, тем мельче ферритно-цементитная смесь. Образующиеся более мелкие, по сравнению с перлитом, структуры имеют повышенную твердость и свое особое название. Представление о механизме распада аустенита дает так называемая диаграмма изотермического превращения аустенита (рис. 3.4).

С-образные кривые отображают начало и конец изотермического превращения аустенита при разных температурах, т.е. зависимость от степени его переохлаждения. Изотермическое превращение аустенита начинается через некоторый период времени. Сначала, при увеличении степени переохлаждения, этот период уменьшается до некоторой критической величины t, а затем снова увеличивается.

Кривые охлаждения, которые отражают скорость охлаждения, строят в тех же координатах, что и диаграмму изотермического превращения аустенита. При небольшой скорости охлаждения V1» 1 град/сек (охлаждение вместе с печью) аустенит переохлаждается незначительно и распадается с образованием

Рис. 3.3. Зависимость положения критических точек эвтектоидной стали от скорости охлаждения Рис. 3.4. Диаграмма изотермического превращения аустенита в эвтектоидной стали

равномерной структуры с твердостью НВ 150. Увеличение скорости охлаждения (V2 » 10 град/сек) (охлаждение на воздухе) ведет к большему переохлаждению аустенита. Аустенит распадается с образованием феррито-цементитной смеси, которая более дисперсная чем перлит, она называется сорбитом. Сталь, в структуре которой преобладает сорбит, обладает высокой прочностью и пластичностью (НВ 250. 300 – для среднеуглеродистой стали). При еще большей скорости охлаждения (V3 » 100 град/сек) аустенит распадается с образованием наимельчайших частиц феррита и цементита. Такая структура называется трооститом. Сталь, имеющая в своей структуре троостит, характеризуется повышенной твердостью, которая достигает НВ 350. 400, достаточной прочностью, вязкостью и пластичностью.

По своему строению перлит, сорбит и троостит очень сходны и представляют собой механические смеси феррита и цементита, отличающиеся лишь размерами пластинок феррита и цементита.

В случае очень высокой скорости охлаждения (Vкр и более) (охлаждение в воде) превращение аустенита не успевает начаться, происходит только бездиффузионное изменение, которое называется мартенситом. Мартенсит отличается от сорбита и троостита и по структуре и по свойствам. Он представляет собой твердый раствор углерода в -железе, имеет игольчатое строение, обладает высокой твердостью, очень низкой пластичностью. Особенность его структуры объясняется тем, что при резком охлаждении углерод не успевает выделиться из твердого раствора аустенита в виде частичек цементита, как это происходит при образовании перлита, сорбита и троостита. Происходит только перестройка с гранецентрированной решетки
-железа на объемно-центрированную решетку -железа. При этом весь углерод остается в решетке -железа, значительно искажая ее. В результате большого искривления кристаллической решетки твердость мартенсита достигает НВ 600. 650.

Читайте также:  Углеродистые стали свойства химический состав маркировка

Минимальная скорость охлаждения, при которой в стали происходят только мартенситные превращения, называется критической скоростью охлаждения Vкр.

Температура мартенситного превращения не зависит от скорости охлаждения. Мартенситное превращение начинается и заканчивается при определенной температуре и происходит только при непрерывном охлаждении стали. Температура начала мартенситного превращения (Мн) и температура окончания (Мк) изменяются в зависимости от содержания углерода в стали. Так при низком содержании углерода (С£0,2%) Мн составляет порядка 450¸520 0 С, а Мк – 380¸430 0 С. При содержании углерода более 0,6% температура Мн снижается и составляет 270 0 С и ниже, Мк уходит в область отрицательных температур и может достигать минус 100ºС. При скорости охлаждения более Vкр аустенит переохлаждается без изменения до температуры Мн и потом превращается в мартенсит.

Структурные составляющие железоуглеродистых сплавов – феррит, перлит, ледебурит, цементит, аустенит и др. – обладают различными свойствами и различной твердостью (табл. 3.1).

Источник

Фазовые превращения при нагреве и охлаждении

Все изготовленные из стали изделия в процессе их получения и эксплуатации подвергаются воздействию изменяющихся температур. В результате нагрева и охлаждения происходят фазовые превращения, влияющие на структуру и свойства сталей.

Эти превращения можно разбить на три группы:

  1. Превращения в стали при нагреве.
  2. Превращения при охлаждении.
  3. Превращения при нагреве закаленных сталей.

Превращения в стали при нагреве

Температуры, при которых происходят изменения в структуре, принято называть критическими точками. При нагреве стали выделяют следующие точки:

Ас1 – превращение перлита в аустенит (линия РSК диаграммы состояния Fe – Fe3С);

Ас3 – соответствует переходу последних кристаллов феррита в аустенит при нагреве (линия GS);

Асm – конец растворения вторичного цементита в аустените (линия SE).

Во всех сплавах железа с углеродом нагрев выше критической точки Ас1 приводит к превращению перлита в аустенит. В эвтектоидной стали (0,8% С) при дальнейшем повышении температуры никаких фазовых превращений не происходит вплоть до линии солидус. В доэвтектоидных и заэвтектоидных сталях после превращения перлита в аустенит еще остаются избыточные фазы (феррит в доэвтектоидных и цементит в заэвтектоидных). Для получения однофазной аустенитной структуры доэвтектоидные стали необходимо нагреть до температуры выше Ас3, а заэвтектоидные — Асm. Зерна аустенита, образующиеся при нагревании стали выше точки Ас1, получаются мелкими. При дальнейшем повышении температуры нагрева или длительности выдержки при данной температуре происходит рост аустенитного зерна. От размера зерна аустенита, образовавшегося при нагреве, зависит размер зерна продуктов распада аустенита при охлаждении.

Читайте также:  Фасонные изделия из тонколистовой стали

Скорость роста аустенитного зерна различна у разных сталей и даже у одной стали, изготовленной по различным технологиям.

По склонности к росту зерна различают два вида сталей: 1) наследственно мелкозернистые и 2) наследственно крупнозернистые.

К наследственно крупнозернистым относятся стали, раскисленные ферросилицием и ферромарганцем. Стали, дополнительно раскисленные алюминием, — наследственно мелкозернистые. Большинство легирующих элементов (хром, молибден, ванадий, титан и др.) способствуют получению наследственного мелкого зерна. Однако есть и исключения. Марганец, бор и фосфор способствуют росту зерна аустенита. Наследственное зерно – это технологическая характеристика.

Термин „наследственно крупнозернистая” или ”наследственно мелкозернистая” сталь не означает, что данные стали всегда будут иметь крупное или мелкое зерно. „Наследственное зерно” определяет лиш склонность зерна к росту. Поскольку наследственно мелкозернистая сталь при высокой температуре нагрева может иметь более крупное зерно аустенита, чем наследственно крупнозернистая, введено понятие „действительного зерна”, т.е. зерна аустенита, определяемого температурой нагрева и продолжительностью выдержки при последней операции термообработки.

Механические свойства (ударная вязкость, предел усталости) зависят только от величины действительного зерна.

Если в сталях в результате нагрева образовалось крупное зерно (перегрев), неблагоприятно влияющее на свойства, то его исправляют повторной аустенизацией с меньшим перегревом относительно критических точек.

Превращения в стали при охлаждении.

Аустенит устойчив в углеродистой стали при температуре ³727°С (АсІ). Если его охладить ниже этой температуры, то он оказывается в неустойчивом состоянии и претерпевает превращение. Это превращения может идти двумя путями: изотермически и при непрерывном охлаждении.

Для изучения изотермического превращения аустенита небольшие образцы стали нагревают до температур, соответствующих существованию стабильного аустенита, т.е. выше Ас3 для доэвтектоидной стали. АсІ — для эвтектоидной и Асm – заэвтектоидной. Затем быстро охлаждают (переохлаждают) до температур ниже Ас3 (например, до 700, 600, 500 и т.д.) и выдерживают при этих температурах до полного превращения аустенита. Превращение аустенита начинается не сразу, а через некоторый промежуток времени (инкубационный период). Инкубационный период при разных температурах различен. По зафиксированным точкам начала и конца превращения аустенита строят диаграммы, в координатах температура-время (для времени принят логарифмический масштаб).

На рис 3.1.2.1 приведена диаграмма изотермического превращения аустенита стали с 0,8% углерода. Область, лежащая левее кривой начала распада аустенита, относится к инкубационному периоду; переохлажденный аустенит практически не претерпевает распада. С увеличением степени переохлаждения длительность инкубационного периода уменьшается, достигая минимума при температуре 550°С, а далее вновь возрастает.

В зависимости от характера превращений, протекающих в переохлажденном аустените, на диаграмме различают три температурные области превращения.

Рис 3.1.2.1. Диаграмма изотермического распада переохлажденного аустенита в эвтектоидной стали (0,8%С)

1. Перлитная (диффузионная) область – от точки АсІ до изгиба изотермической диаграммы (550° С). При этих температурах происходит диффузионный распад аустенита с образованием структуры, состоящей из феррита и цементита. При небольших степенях переохлаждения аустенит превращается в перлит (грубая ферритоцементитная смесь). Чем ниже температура изотермической выдержки, тем мельче пластинки феррита и цементита. Мелкопластинчатый (дисперсный) перлит, образующийся при 600-650° С, называется сорбитом.

В районе выступа кривых начала и конца распада получается высокодисперсный перлит, который называют трооститом. По мере повышения дисперсности строения прочность и твердость возрастают, а пластичность снижается. Твердость перлита 10-15 HRC, сорбита – 30-35 HRC, троостита – 40-45 HRC.

Читайте также:  Марка стали 4116 krupp

2. Область промежуточного превращения – от изгиба кривой (550° С) до точки Мн. Аустенит в этой области превращается в структуру, называется бейнитом (игольчатым трооститом). Бейнит состоит из мелкодисперсных частичек (игл) феррита и цементита. Размер этих частиц еще меньше, чем у троостита. Концентрация углерода в феррите выше равновесной (

3. Область мартенситного (бездиффузионного) превращения – ниже 240°.

При больших степенях переохлаждения происходит быстрая перестройка Ү — железа в α- железо. Времени на диффузионные процессы не остается, углерод не успевает выделиться из аустенита в виде частиц цементита, как это происходит при образовании перлитных структур. Он остается в ОЦК решетке Fe — a, искажая ее. Пресыщенный твердый раствор углерода в Fe — a называется мартенситом.

Мартенсит – очень твердая и прочная структура. Но пластичность и вязкость его низки. В мартенсите имеются, высокие остаточные напряжения, возникающие из-за увеличения удельного объема, вызванного фазовыми превращениями. Превращение аустенита в мартенсит начинается при определенной температуре, называемой Мн. По мере снижения температуры количество аустенита уменьшается, а количество мартенсита возрастает. Окончание превращения происходит в точке Мк – конца превращения. Положение точек Мн и Мк не зависит от скорости охлаждения и определяется химическим составом аустенита. Чем больше в аустените углерода, тем ниже лежат точки Мн и Мк.

Характерным для мартенситного превращения является то, что даже при температуре ниже Мк в стали наряду с мартенситом присутствует некоторое количество остаточного аустенита.

В процессе термической обработки стали часто превращение переохлажденного аустенита происходит не при изотермической выдержке, а при непрерывном охлаждении. Так как диаграмма изотермического распада аустенита построена в координатах температура-время, то на нее можно наложить линии охлаждения стали. (рис 3.1.2.2).

Наклон линии охлаждения в каждый рассматриваемый момент определяется скоростью охлаждения.

Рис 3.1.2.2. Диаграмма изотермического распада переохлажденного аустенита в эвтектоидной стали с наложенными на нее линиями охлаждения.

Вектор V1 (медленное охлаждение вместе с печью) пересекает линии диаграммы изотермического распада аустенита при высоких температурах и малом переохлаждении, и продуктом превращения является перлит.

С увеличением скорости охлаждения векторы V2 (охлаждение на воздухе) и V3 (охлаждение в масле) пересекают линии диаграммы при более низких температурах и образуются более мелкие феррито-цементные смеси – сорбит и троостит.

При скорости охлаждения V4 полного превращения аустенита в феррито-цементную смесь не происходит, часть его переохлаждается до точки Мн, в результате чего образуется структура, состоящая из троостита и мартенсита (охлаждение в масле, мелкие изделия).

V5 — вектор, который направлен по касательной к выступу изотермической кривой, приводит к переохлаждению всего аустенита до температуры ниже точки Мн и образованию мартенситной структуры. V5(Vкр) называется критической скоростью закалки (минимальная скорость охлаждения, при которой образуется мартенсит без продуктов перлитного распада). Для углеродистой стали это вода. При скорости охлаждения V6 также образуется мартенситная структур (водные растворы солей, щелочей).

Дата добавления: 2018-04-04 ; просмотров: 3027 ; Мы поможем в написании вашей работы!

Источник

Adblock
detector